• 英文文献

2023年

  • Li, X., Hu, X.M.*, An, W., Liu, Q., Garzanti, E., Meng, J., 2023. From Neo-Tethyan convergence to India-Asia collision: radiolarian biostratigraphy of the Cretaceous to Paleocene deep-water Tethys Himalaya. Newsletters on Stratigaphy, 56 (1): 33-52.(PDF)

  • Xue, W.W., Hu, X.M.*, Garzanti, E., Ma, A.L., Lai,W., Li, C., 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age and Hf isotope facies. Earth-Science Reviews 236, 104271. (PDF)

2022年



2021年

  • Akdoğan, R., Hu, X.M.*, Okay, A.I., Topuz, G., Xue, W.W., 2021, Provenance of the Paleozoic to Mesozoic Siliciclastic Rocks of the Istanbul Zone Constrains the Timing of the Rheic Ocean Closure in the Eastern Mediterranean Region. Tectonics, 10.1029/2021TC006824. (PDF)

  • An, W., Hu, X.M., Garzanti, E., Wang, J.G., Liu, Q., 2021, New Precise Dating of the India-Asia Collision in theTibetan Himalaya at 61 Ma, Geophysical Research Letters, 10.1029/2020GL090641. (PDF)

  • Guo, R.H., Hu, X.M., Garzanti, E., Lai, W., 2021, Boron isotope composition of detrital tourmaline: A new tool in provenance analysis
, Lithos 400-401, 106360(PDF)

  • Han, Z., Hu, X.M., BouDagherFadel, M., Jenkyns, H.C., Franceschi, M., 2021, Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya,southern hemisphere
, Newsletters on Stratigraphy 54, 461-481. (PDF)

  • Jiang, J.X., Hu, X.M., Li, J., BouDagher-Fadel, M., Garzanti, E., 2021. Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux. Palaeogeography,  Palaeoclimatology, Palaeoecology 562, 110095. (PDF)

  • Xu, Y.W., Hu, X.M., Garzanti, E., BouDagher-Fadel, M., Sun, G.Y., Lai, W., 2021. Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? GSA Bulletin, doi/10.1130/B35930.1. (PDF)

  • Wen, D.J., Hu, X.M., Qu, J.S., Yu, J.H., Wang, R.Q., He, Z.Y., Li, Y.F., 2021. Petrogenesis of early Eocene granites and associated mafific enclaves in the Gangdese batholith, Tibet: Implications for net crustal growth in collision zones. Lithos 394-395, 106170. (PDF)

  • Li, J., Hu, X.M., Garzanti, E., BouDagher-Fadel, M., 2021. SClimate-driven hydrological change and carbonate platform demise induced by the Paleocene–Eocene Thermal Maximum (southern Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology 567, 110250. (PDF)

  • Akdoğan, R., Hu, X.M., Okay, A.I., Topuz, G., Xue, W.W., 2021, Provenance of the Paleozoic to Mesozoic Siliciclastic Rocks of the Istanbul Zone Constrains the Timing of the Rheic Ocean Closure in the Eastern Mediterranean Region. Tectonics, 10.1029/2021TC006824. (PDF)

  • Tang, Y.L., Shi, Y., Hu, X.M., Liu, X.J., Huang, C.W., 2021. Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai Orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block. Journal of Asian Earth Sciences 220, 104906. (PDF)

  • Liu, Q., Kneller, B., An, W., Hu, X.M., 2021, Sedimentological responses to initial continental collision:triggering of sand injection and onset of mass movement in a syn-collisional trench basin,Saga,southern Tibet,Journal of the Geological Society, https://doi.org/10.1144/jgs2020-178.(PDF)

  •  Yuan, J., Yang, Z.Y., Dong, C.L., Ktijgsman,W., Hu, X.M.,Li, S.H., et al., 2021. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asiacollision. National Science Review 8, nwaa173. (PDF)

  • Zhou, C.H., Wang, H., Wang, C.S., Hou, Z.Q., Zheng Z.M., Shen, S.Z., Cheng, Q.M., Feng, Z.Q., Wang, X.B., Lv, H.R., Fan, J.X., Hu, X.M., Hou, M.C., Zhu, Y.Q., 2021. Geoscience knowledge graph in the big data era. Science China Earth Sciences 64,1105–1114. (PDF)

  • Giovanni, C., Luca, M., Garzanti, E., Sirio, C., Giulia, B., Giovanni, V., Hu, X.M., Daniela, B., 2021, Skeletal assemblages and terrigenous input in the Eocene carbonate systems of the Nummulitic Limestone (NW Europe), Sedimentary Geology 425, 106005. (PDF)

  • Wang, C.S., Hazen, R. M., Cheng, Q.M., Stephenson, M.H., Zhou, C., Fox, P., Shen, S.Z., Oberhansli, R., Hou, Z.Q., Ma, X.G., Feng, Z.Q., Fan, J.X., Ma, C., Hu, X.M., Luo, B., Wang, J.L., Schiffries, C.M., 2021. The Deep-Time Digital Earth program: data-driven discovery in geosciences, National Science Review 8(9), nwab027. (PDF)

2020年

  • Hu, X.M., An, W., Garzanti, E., Liu, Q. , 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China Earth Sciences, 63, https://doi.org/10.1007/s11430-019-9687-x. (PDF)

  • Li, J., Hu, X.M., Zachos, J.C., Garzanti, E., BouDagher-Fadel, M., 2020. Sea level,biotic and carbon-isotope response to the Paleocene–Eocene thermal maximum in Tibetan Himalayan platform carbonates. Global and Planetary Change, 103316. (PDF)

  • Ma, A.L., Hu, X.M., Kapp, P., Lai, W., Han, Z., Xue, W.W., 2020. Mesozoic Subduction Accretion History in Central Tibet Constrained From Provenance Analysis of the Mugagangri Subduction Complex in the Bangong‐Nujiang Suture Zone. Tectonics, 1-22.(PDF)

  • Zhou, X.H.,Hu, X.M.,Jiang, R.,Gao, T.S.,Ma, X.,Xing, G.F.,Sun, G.Y., Shu, X.J., Zhao, X.L., 2020. Sedimentary Facies, Provenance and Geochronology of the Heshangzhen Group: Implications for the Tectonic Evolution of the Eastern Jiangnan Orogen, South China.Acta Geologica Sinica 94,1138-1158. (PDF)

  • Xue, W.W., Hu, X.M., Ma, A.L., Gareznti, E., Li, J., 2020. Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system .Marine and Petroleum Geology, 104558.(PDF)

  • Hu, X.M.,  Li, J., Han, Z., Li, Y.X., 2020. Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms.  Science China Earth Sciences 63, 1041–1058. (PDF)

  • Guo, R.H., Hu, X.M., Garzanti, E., Lai, W., Yan, B., Mark, C., 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon,titanite, rutile and monazite record magmatic andmetamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews 201, 103082. (PDF)

  • Li, J., Hu, X.M., Garzanti, E., Banerjee, S., BouDagher-Fadel, M., 2020. Late Cretaceous topographic doming caused by initial upwelling of Deccan magmas: Stratigraphic and sedimentological evidence. GSA Bulletin, 132 (3-4): 835–849. PDF)

  • Li, C., Hu, X.M., Wang, J.G., Vermeesch, P., Garzanti, E., 2020. Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continentalarc in South China. Tectonophysics 780, 22840. (PDF)

  • Ma, A.L., Hu, X.M., Kapp, P., BouDagher-Fadel, M., Lai, W., 2020. Pre‐Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet. Geophysical Research Letters. 10.1029/2019GL08665. (PDF)

  • Xu, Y.W., Hu, X.M., BouDagher-Fadel, M., Su., G.Y., Lai.,W., Li.,J., Zhang., S.J., 2019. The major late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet. Geological Society, London, Special Publication. Geological Society 498,  211-232.(PDF)

2019年

  • Li, N., Hao, H.Z., Jiang, Z.W., Jiang, F., Guo, R.H., G, Q., Hu, X.M., 2019. A multi-task multi-class learning method for automatic identification of heavy minerals from river sand. Computers & Geosciences 135, 104403.  (PDF)

  • Zhang, S.J., Hu, X.M., Garzanti, E., 2019. Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin. Tectonophysics 722,1-16. (PDF)

  • Lai, W., Hu, X.M, Garzanti, E., Xu, Y.W., Ma, A.L., Li, W., 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research 73, 136-152.PDF)

  • Hao, H.Z., Guo, R.H., Gu., Q., Hu, X.M., 2019. Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Minerals Engineering 147, https://doi.org/10.1016/j.mineng.2019.105899   (PDF)

  • Sun, G.Y., Hu, X.M., Xu, Y.W., BouDagher-Fadel, M.K., 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics 750, 344-358.   (PDF)

  • Lai, W., Hu, X., Garzanti, E., Sun, G., Garzione, C.N., BouDagher-Fadel, M., Ma, A.L., 2019. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 1823-1836.   (PDF)

  • Chen, Z.Q., Hu, X.M., Montañez, I.P., Ogg, J.G., 2019. Sedimentology as a key to undersyanding earth and life processes.Earth-Science Reviews 189, 1-5.   (PDF)

2018年

  • An, W., Hu, X.M., Garzanti, E., 2018. Discovery of Upper Cretaceous Neo-Tethyan trench deposits in south Tibet (Luogangcu Formation). Lithosphere 10, 446-459.   (PDF)

  • Fu, H.P., Hu, X.M., Crouch, E.M., An, W., Wang, J.G., Garzanti, E., 2018. Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Science China Earth Sciences 61, 1204-1220.   (PDF)

  • Han, Z., Hu, X.M., Kemp, D.B., Li, J., 2018. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise. Earth and Planetary Science Letters 489, 59-71.   (PDF)

  • Ma, A.L., Hu, X.M., Kapp. P., Han. Z., Lai. W., BouDagher-Fadel, M., 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet.   PalaeogeographyPalaeoclimatology Palaeoecology 506, 30-47.   (PDF)

  • Zhang, S.J., Hu, X.M., Han, Z., Li, J., Garzanti, E., 2018. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea. Palaeogeography Palaeoclimatology Palaeoecology 501, 92-110.   (PDF)

  • Ma, A.L., Hu, X.M., 2018. Reply to Comment by W.-Y.Chen et al.on“Sedimentary and Tectonic Evolution of the Southem Qiangtang Basin:Implication for the Lhasa-Qiangtang Collision Timing”. Journal of Geophysical Research: Solid Earth 123, 7343-7346. (PDF)

  • Jiang, F., Gu, Q., Hao, H.Z., Li, N.,Wang, B.Q., Hu, X.M., 2018. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone. Computers 

    and Geosciences 115, 143-153.   (PDF)

2017年

  • Hu, X.M., Wang, J.G., An, W., Garzanti, E., Li, J., 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China-Earth Sciences 60, 603-625. (PDF)

  • Huang, W.T., Lippert, P. C., Jackson, M. J., Dekkers, M. J., Zhang, Y., Li, J., Guo, Z. J., Kapp, P., van Hinsbergen, D. J. J., 2017.Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision. Journal of Geophysical Research-Solid Earth 122, 808-825.   (PDF)

  • Huang, W.T., Lippert, P. C., Zhang, Y., Jackson, M. J., Dekkers, M. J., Li, J.,Hu, X.M., Zhang, B., Guo, Z. J., van Hinsbergen, D. J. J., 2017. Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research-Solid Earth 122, 2434-2456.   (PDF)

  • Li, J., Hu, X.M., Garzanti, E., BouDagher-Fadel, M.K., 2017. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Palaeogeography Palaeoclimatology Palaeoecology 466, 153-165.   (PDF)

  • Ma, A.L., Hu, X.M., Garzanti, E., Han, Z., Lai, W., 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research-Solid Earth 122, 4790-4813.   (PDF)

  • BouDagher-Fadel, M.K., Hu, X.M., Price, G.D., Sun, G.Y., Wang,J.G., An, W., 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-cretaceous limestones in the southern tibetan plateau. Journal of Foraminiferal Research 2, 188-207.   (PDF)

  • Sun, G.Y., Hu, X.M., Sinclair, H.D., 2017. Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 101-118.   (PDF)

  • Wang, J.-G., Hu, X., Garzanti, E., An, W., Liu, X.-C., 2017a. The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sc Lett 465, 38-47.   (PDF)

  • Wang, J.G., Hu, X.M., Garzanti, E., Ji, W.Q., Liu, Z.C., Liu, X.C., Wu, F.Y., 2017. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research-Solid Earth 122, 5748-5765.   (PDF)

  • Li, N., Hao, H.Z., Gu, Q., Wang, D.R., Hu, X.M., 2017. A transfer learning method for automatic identification of sandstone microscopic images. Computers & Geosciences 103, 111-121.   (PDF)

  • BouDagher-Fadel, M.K., Hu, X.M., Price, G.D., Sun, G.Y., Wang,J.G., An, W., 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-cretaceous limestones in the southern tibetan plateau. Journal of Foraminiferal Research 2, 188-207.   (PDF)

  • Lai, W., Hu, X.M., Zhu, D.C., An, W., Ma, A.L., 2017. Discovery of the early Jurassic Gajia m,lange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean? International Journal of Earth Sciences 106, 1277-1288.   ‍(PDF)

  • An, W., Hu, X.M., Garzanti, E., 2017. Sandstone provenance and tectonic evolution of the Xiukang Melange from Neotethyan subduction to India-Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Research 41,222-234.   (PDF)

  • Hu, X.M., Wagreich, M., Sames, B., 2017. Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes. Science China-Earth Sciences 60, 1-4.   (PDF)

2016年

  • Han, Z., Hu, X.M., Li, J., Garzanti, E., 2016. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeography Palaeoclimatology Palaeoecology 456, 1-20.   (PDF)

  • Hu, X.M., Garzanti, E., Wang, J. G., Huang, W. T., An, W., Webb, A., 2016. The timing of India-Asia collision onset - Facts, theories, controversies. Earth-Science Reviews 160, 264-299.   (PDF)

  • Li, J., Hu, X.M., Zhao, K.D., Cai, Y.F., Sun, T., 2016. Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy). Cretaceous Research 66, 115-128.   (PDF)

  • Wang, J.G., Wang, J.G., Wu, F.Y., Garzanti, E., Hu, X.M., Ji, W.Q., Liu, Z. C., Liu, X. C., 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research34, 84-98.   (PDF)

  • Hu, X.M., Wang, J.G., BouDagher-Fadel, M., Garzanti, E., An, W., 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research 32, 76-92.   (PDF)

  • Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M.C., Hu, X.M., Wendler, I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O., 2016. Review:Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 393-411.   (PDF)

2015年

  • BouDagher-Fadel, M.K., Price, G.D., Hu, X.M., Li, J., 2015. Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme. Stratigraphy 12, 67-91.  (PDF)

  • Garzanti, E., Hu, X.M., 2015. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Research28, 165-178.   (PDF)

  • Hu, X.M., Garzanti, E., An, W., 2015. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology. Journal of Palaeogeography-English 4, 85-98.   (PDF)

  • Hu, X.M., Garzanti, E., Moore, T., Raffi, I., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 +/- 1 Ma). Geology 43, 859-862.   (PDF)

  • Hu, X.M, Wang, J.G, BouDagher-Fadel, M., Garzanti, E., An, W., 2015d. New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res 32,76-92.   (PDF)

  • Huang, W.T. et al., 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry Geophysics Geosystems 16,77-100.   (PDF)

  • Li, J., Hu, X.M., Garzanti, E., An, W., Wang, J.G., 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental collision. Journal of Asian Earth Sciences 104, 39-54.   (PDF)

  • Sun, G.Y., Hu, X.M., Zhu, D.C., Hong, W.T., Wang, J.G., Wang, Q., 2015. Thickened juvenile lower crust-derived ~90Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithosphere 224, 225-240.   (PDF)

  • Sun , G.Y., Hu, X.M., Sinclair, H.D., BouDagher-Fadel, M.K., Wang, J.G., 2015. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. GSA Bulletin 127, 1001-1021.   (PDF)

  • Wang, J.G., Hu, X.M., BouDagher-Fadel, M.K., Wu, F.Y., Sun, G.Y., 2015. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India-Asia collision. Sedimentary Geology, 315, 1-13.   (PDF)

2014年

2013年

  • Wang, J.G., Hu, X.M., Garzanti, E., Wu, F.Y., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. Journal of Geology 121, 425-444.   (PDF)

  • Yu, J.H., Liu, Q., Hu. X.M., Wang, Q., Y, O.R.S., 2013. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny? . Chinese Science Bulletin 58, 788-795.   (PDF)

2012年

  • He, L.F., Hu, X.M., Xu, L.G., He, Z.X., Li, W.L., 2012. Feasibility of monitoring hydraulic fracturing using time-lapse audio-magnetotellurics. Geophysics 77, 119-126.   (PDF)

  • Hu, X.M., 2012. Testing the validity of Nd isotopes as a provenance tool in southern Tibet for constraining the initial India-Asia collision. Journal of Asian Earth Sciences 53, 51-58.   (PDF)

  • Hu, X.M. et al., 2012. Geology of the Fuding inlier in southeastern China: Implication for late Paleozoic Cathaysian paleogeography. Gondwana Research 22, 507-518.   (PDF)

  • Hu, X.M., Scott, R.W., Cai, Y.F., Wang, C.S., Melinte-Dobrinescu, M.C., 2012. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth-Science Reviews 115, 217-248.   (PDF)

  • Hu, X.M., Sinclair, H.D., Wang, J.G., Jiang, H.H., Wu, F.Y., 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision. Basin Research 24, 520-543.   (PDF)

  • Hu, X.M., Wagreich, M., Yilmaz, I.O., 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research 38, 1-6.   (PDF)

  • Hu, X.M., Zhao, K.D., Yilmaz, I.O., Li, Y.X., 2012. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretaceous Research 38, 40-51.   (PDF)

  • Li, X., Cai, Y.F., Hu, X.M., Huang, Z.C., Wang, J.G., 2012. Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals 47, 45-58.   (PDF)

2011年

  • Li, X.A., Hu, X.M., Cai, Y.F., Han, Z.Y., 2011. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic. Sedimentary Geology 235, 91-99.   (PDF)

  • Wang, C.S., Hu, X. M., Huang, Y. J., Wagreich, M., Scott, R., Hay, W., 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology 235, 27-37.   (PDF)

  • Wang, J.G., Hu, X.M., Jansa, L., Huang, Z.C., 2011. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet: Constraints on the Timing of Initial India-Asia Collision. Journal of Geology 119, 293-309.   (PDF)

  • Wagreich, M., Hu, X.M., Sageman, B., 2011. Causes of oxic–anoxic changes in Cretaceous marine environments and their implications for Earth systems—An introduction. Sediment Geol 235, 1-4.   (PDF)

2010年

  • Hu, X.M., Jansa, L., Chen, L., Griffin, W. L., Y, O.R.S., Wang, J. G., 2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology 223, 193-205.   (PDF)

  • Wang, J.G., Hu, X.M., Wu, F.Y., Jansa, L., 2010. Provenance of the Liuqu Conglomerate in southern Tibet A Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology, 231, 74-84.   (PDF)

2009年

  • Cai, Y.F., Li, X., Hu, X.M., Chen, X.M., Pan, Y.G., 2009. Paleoclimatic approach to the origin of the coloring of Turonian pelagic limestones from the Vispi Quarry section (Cretaceous, central Italy). Cretaceous Research 30, 1205-1216.   (PDF)

  • Jiang, S.Y., Jansa, L., Skupien, P., Yang, J.H., Vasicek, Z., Hu, X.M., Zhao, K.D., 2009. Geochemistry of intercalated red and gray pelagic shales from the Mazak Formation of Cenomanian age in Czech Republic. Episodes 32, 3-12.   (PDF)

  • Li, G.B., Jiang, G.Q., Hu, X.M., Wan, X.Q., 2009. New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China, and their paleogeographic and paleoceanographic implications. Cretaceous Research 30, 1005-1018.   (PDF)

  • Wang, C., Hu, X., Huang, Y., Scott, R., and Wagreich, M., 2009, Cretaceous Oceanic Red Beds (CORB): A Window on Global Oceanic/Climatic Change, in Hu, X., Wang, C., Scott, R.W., Wagreich, M., and Jansa, L., eds., Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic/Paleoclimatic Significance: Tulsa, OK, SEPM Special Publication 91, p. 13-33.   (PDF)

  • Hu, X.M., Chen, W., Ji, J., 2009. Origin of Cretaceous oceanic red beds from the Vispi Quarry section, central Italy:visible reflectance and inorganic geohemistry. SEPM Special Publication 91,183-197.   (PDF)

  • Scott, R., Hu, X., Wang, C., Michael., W., and Jansa, L., 2009, Introduction, in Hu, X., Wang, C., Scott, R.W., Wagreich, M., and Jansa, L., eds., Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic/Paleoclimatic Significance: Tulsa, OK, SEPM Special Publication 91, p. 7-10. (PDF)

  • Jansa, L., and Hu, X., 2009, An Overview of the Cretaceous pelagic black shales and red beds: origin, paleoclimate and paleoceanographic implications, in Hu, X., Wang, C., Scott, R.W., Wagreich, M., and Jansa, L., eds., Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic/Paleoclimatic Significance: Tulsa, OK, SEPM Special Publication 91, p. 59-72. (PDF)

2008年

  • Hu, X.M., Jansa, L., Wang, C.S., 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research 29, 301-315.   (PDF)

2007年

  • Li, Y.L., Wang, C.S., Hu, X.M., M.Bak., Wang, J.J., Chen, L., 2007. Characteristics of Early Eocene radiolarian assemblages of the Saga area, southern Tibet and their constraint on the closure history of the Tethys. Chinese Science Bulletin 52, 2108-2114.   (PDF)

  • Huang, Y.J., Wang, C.S., Hu, X.M., Chen, X., 2007. Burial Records of Reactive Iron in Cretaceous Black Shales and Oceanic Red Beds from Southern Tibet. Acta Geologica Sinica(English Edition) 81, 463-469.   (PDF)

  • Li, G.B., Wan, X. Q., Jiang,G.Q., Hu, X.M., Nicolas, G., Hang,H.D., Chen,X.,2007. Late Cretaceous Foraminifera melange in Southern Tibet. Acta Geol Sin-Engl 81, 917-924.   (PDF)

2006年

2005年

  • Hu, X.M., Jansa, L., Wang, C. S., Sarti, M., Bak, K., Wagreich, M., Michalik, J., Sotak, J., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 26, 3-20.   (PDF)

  • Li, X.H., Wang, C.S., Hu, X.M., 2005. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research 26, 33-41.   (PDF)

  • Wang, C.S., Hu, X.M., Sarti, M., Scott, R.W., Li, X.H., 2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research 26, 21-32.   (PDF)

  • Zou, Y.R., Kong, F., Peng, P.A., Hu, X.M., Wang, C.S., 2005. Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: a preliminary study. Cretaceous Research 26, 65-71.   (PDF)

  • Hu, X.M., Lilian, S., MASSIMO, S., 2005. 西班牙南部Subbetic中带Río Fardes剖面Turonian-Coniacian大洋红层(英文). 地学前缘, 12,38-44.   (PDF)

2004年

  • Wang, C.S., Huang, Y.J., Hu, Y.M., Li, X.H., 2004. Cretaceous oceanic redbeds: Implications for paleoclimatology and paleoceanography. Acta Geologica Sinica-English Edition 78, 873-877.   (PDF)

  • Melinte, M.C., Scott, R., Wang, C.S., Hu, X.M., 2004. Cretaceous oceanic red bed deposition, a tool for paleoenvironmental changes—Workshop of IGCP 463 & 494. Episodes 28, 121-123.   (PDF)

2002年

  • Wang, C.S., Li, X.H., Hu, X.M., Jansa, L.F., 2002. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova 14, 114-120.   (PDF)

  • Hu, X.M., Wang, C.S., Sarti, M., Scott, R.W., 2002. First Workshop of IGCP 463: Upper Cretaceous Oceanic Red Beds. Eiposides 25,273-274.   (PDF)

2001年

  • Wang, C.S., Hu, X.M., Jansa, L., Wan, X.Q., Tao, R., 2001. The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research 22, 481-490.   (PDF)

  • Hu, X.M., Wang, C.S., Li, X.H., Fan, S.F., Peng, P.A., 2001. The Cenomanian-Turonian Anoxic Event in Southern Tibet: A Study of Organic Geochemistry Chinese Journal of Geochemistry 20, 289-295.   (PDF)