[276] Hu, X.M.*, Garzanti, E., Li, J., BouDagher-Fadel, M., Coletti, M., Ma,A.L., Liang, W.D., Xue, W.W., 2024, The “underfilled trinity model” of foreland basins revisited: reality or myth? Journal of Palaeogeography, 13(4): 675e705 (00350). (PDF)
[275] Hu, X.M.*, Jiang, J.X., Cai, Y., Han, Z., Xu, Y.W., 2024. Temporal scaling of carbon emission accuations and rates of the Meso-Cenozoic hyperthermal events: implication to the Anthropocene global warming. Mesozoic 1(3): 396-407. (PDF)
[274] Deng, T., Hu, X.M.*, Chew, D.,Schönig, J., Ma, A.L., Liang, W.D., Drakou, F., 2024. Early Jurassic initiation of the modern drainage pattern of the Dabie orogen (East China) revealed bya multi-proxy provenance approach. Basin Research 36, e12834. https://doi.org/10.1111/bre.12834. (PDF)
[273] Deng, T., Hu, X.M.*, Chew, D., Wang, Q., Yu, J.h., Drakou, F. 2024.Sedimentological evidence for pre-Early Permian continental subduction in the Dabie orogen, central-east China. Tectonics 43, e2023TC007839. doi.org/10.1029/2023TC007839. (PDF)
[272] Deng, T., Ma. A.L.*, Chew. D., Hu, X.M., Wang., P., Jibu, Y.Z., 2024, Revisiting the stratigraphical, sedimentological and provenance evolution of Lingshan Island, offshore of east China: Implications for the destruction of the north China craton. Marine and Petroleum Geology 161, 106701. (PDF)
[271] Dong, X.L., Hu, X.M.*, Lai, W., Xue, W.W., Zhang, S.J., et al.,2024. A global dataset of sandstone detrital composition by Gazzi-Dickinson method. Geoscience Data Journal 11, 128-136. (PDF)
[270] He, J.W., Hu., X.M., Li, J., Kemp., D.B., Hou, M.C., Han, Z.*, 2024, Millennial-scale sedimentary evolution of carbonate platforms during the Permian–Triassic boundary hyperthermal event. Palaeogeography, Palaeoclimatology, Palaeoecology 654, 112455. (PDF)
[269] Jiang, J.X.*, Hu, X.M., Garzanti, E., BOUDAGHER-FADEL, M., An, W., 2024. The fate of the Xigaze forearc basin after Late Cretaceous filling (South Tibet). Mesozoic 1(3): 349–365. (PDF)
[268] Lai, W.*, Hu, X.M., Ma, A.L., 2024, Spatial heterogeneity of Cenozoic provenance in the Nima and Lunpola basins of China: Implications for the origin of the low-relief topography in central Tibet Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 643, 112196. (PDF)
[267] Lai, W., Hu, X.M.*, Dong, X.L., Ma, A.L., 2024. A dataset of sandstone detrital composition from Qinghai-Tibet Plateau. Geoscience Data Journal 11, 86-93.(PDF)
[266] Li, J., Hu, X.M.*, Garzanti, E., Boudagher-FadeL, M., Jiang, J.X., Xu, Y.W., 2024, The record of the Early Late Paleocene Event (ELPE, 59.5 Ma) in shallow-water Tethys Himalayan carbonates (Zongpu Formation, South Tibet), Journal of Sedimentary Research 94, 937–952. (PDF)
[265] Ma, A.L., Hu, X.M.*, Garzanti, E., Xue, W.W., Schlagintweit, F., Xu, Y.W., Lai, W. 2024, Diachronous Cretaceous closure ofthe Bangong‐Nujiang‐Shyok Ocean(westernmost central Tibet). Tectonics 43, e2024TC008280. (PDF)
[264] Ma, A.L., Hu, X.M.*, Li, X., Pullen, A., Garzanti E., Suzuki, N., 2024, Timing of rifting of the Dongkaco microcontinent (Central Tibet) and implications for Neo-Tethyan evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 638, 112054. (PDF)
[263] Ma, A.L.*, Hu, X.M., Garzanti, E., Xue, W.W., 2024. Discovery of ≥ 105 Ma continental redbeds in the Qiangtang Block: Implications for the early uplift of central Tibet. Mesozoic 1(3): 340–348. (PDF)
[262] Meng, F., Han, Z.*, Hu, X.M., Jenkyns, H. C., Zhang, B., Chen, X., & Hou, M., 2024. Siderite from the Tibetan Himalaya: Evidence for a low sulphate ocean during Oceanic Anoxic Event 1a (Early Aptian). Sedimentology, 71(7), 2358-2377. (PDF)
[261] Yang, Y.B., Han, Z.*, Hu, X.M., He, T.C., Newton, R.J., Harvey, J., 2024. Strontium isotope evidence for regional enhanced continental weathering during the early Toarcian in the Tethys Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 641, 112136. (PDF)
[260] Sun, G.Y.*, Sinclair, H.D., Persano, C., Sruart, F.M., Hu, X.M.*, 2024, Late Cretaceous-Eocene exhumation of the northern Lhasa terrane and topographic implications for the Central Tibet. LITHOS 470-471, 107528. (PDF)
[259] Zhang, S.J., Najman, Y., Hu, X.M.*, Carter, A., Mark, C., Xue, W.W., 2024, Constraining the exhumation history of the northwestern margin of Tibet with a comparison to the adjacent Pamir. Journal of the Geological Society, doi.org/10.1144/jgs2023-198.(PDF)
[258] Xu, Y.W.*, Lai, W., Hu, X.M., 2024. Palaeoenvironmental analysis of the Langshan Formation in the Xiongba area. Mesozoic 1(3): 379–388. (PDF)
[257] Zhang, S.J.*, Hu, X.M., Zhang, J.R., Li, Q., Xu, Y.W., Yu, Y.Y., Han, L.Q., 2024. A database of detrital zircon U–Pb ages and Hf isotopic compositions from the Tarim, West Kunlun, Pamir, Tajik and Tianshuihai terranes. Geoscience Data Journal 11, 118-127. (PDF)
[256] Kemp, D.B., Han, Z., Hu, X.M., Chen, W.H., Jin, S.M., Izumi, K., Yan, Q., Baranyi, V., Jin, X., Dal Corso, K., Ge, Y.Z., 2024, Global hydroclimate perturbations during the Toarcian oceanic anoxic event, Earth-Science Reviews 258, 104946. (PDF)
[255] Yang, Y.B., Han, Z., Hu, X.M., He, T.C., Newton, R.J., Harvey, J., 2024, Strontium isotope evidence for regional enhanced continental weathering during the early Toarcian in the Tethys Himalaya, Palaeogeography, Palaeoclimatology, Palaeoecology 641, 112136. (PDF)
[254] Li, S.Q., Sun, G.Y.*, You, T.N., Hu, X.M., 2024. Late Cretaceous Rapid Exhumation of the Central Tibetan Plateau: Insights from Low-Temperature Thermochronology. Mesozoic 1(3): 315-330. (PDF)
[253] Huang, T,Y., Ma, C., Jin, S.D., Yang, Y.D., Hu, X.M., Hou, M.C., 2024. Quaternary sedimentation rate revealed by semi-quantitative analysis in global ocean, Marine and Petroleum Geology 166, 106900. (PDF)
[252] Zhou, H., Hu, J.S., Zilio, L., Tang, M., Li, K.Q., Hu, X.M., 2024, India–Eurasia convergence speed-up by passive-margin sediment subduction. Nature 635, doi.org/10.1038/s41586-024-08069-6. (PDF)
[251] Li, X., Ma, A.L., Hu, X.M., Garzanti, E., Jiang, S.J., Chen, X., David B. Kemp, Wang, J.G., He, L.F., Sun, G.Y., An, W., Zhong, H.T., Wu, H.P., He, T.C., Wang, D., Sun, J., Li, T., Wang, X., Han, Z., Zhang, S.J., Liang, W.D., Lai, W., Xu, Y.W., Xue, WW., Wen, D.J., Jiang, J.X., Huang, D.Y., 2024. In memory of Dr Juan Li, a young geologist (1987–2023). Mesozoic 1(3): 210-220. (PDF)
[250] 肖开迅, 胡修棉*, 蒋璟鑫, 王家昊. 2024. 碳酸盐补偿深度(CCD)是解密新生代表层碳循环的潜在钥匙. 中国科学: 地球科学. 54(6): 1769-1785. (PDF)
[249] 王家昊, 胡修棉*, 蒋璟鑫, 马超, 马鹏飞. 2024. 重建南海27Ma以来高分辨率碳酸盐补偿深度. 地学前缘.31(1): 500-510.(PDF)
[248] 张逍姬, 胡修棉*, 李娟, 许艺炜. 2024. 下扬子地区早二叠世末期碳酸盐台地死亡事件的沉积学与碳同位素记录. 高校地质学报. 30(4): 379-396.(PDF)
[247] Hu, X.M.*, Xu, Y.W., Ma, X.G., Zhu, Y.Q., Ma, C., Li, C., Lü, H.R., Wang, X.B, Zhou, C.H., Wang, C.S., 2023. Knowledge System, Ontology, and Knowledge Graph of the Deep-Time Digital Earth (DDE): Progress and Perspective. Journal of Earth Science, 34(5): 1323–1327. (PDF)
[246] Hu, X.M.*, Ma, X.G., Ma, C., Lv, H.R., 2023. The geoscience knowledge system, ontology and knowledge graph fordata-driven discovery: Preface. Geoscience Frontiers 14, 101592. (PDF)
[245] Dong, X.L., Hu, X.M.*, Garzanti, E., Liang, W.D., Li, G.W., Lai, W., Wang, C.S., Han, Z., Deng, T., Li, Z.C., 2023. The extraordinary Namche Barwa sediment factory in the Eastern Himalayan Syntaxis. Basin Research, 35(6): 2193-2216. (PDF)
[244] Han, Z., Hu, X.M.*, Newton, R.J., He, T.C., Mills, B.J.W., Jenkyns, H.C., Ruhl,M., Jamieson, R.A., 2023. Spatially heterogenous seawater δ34S and global cessation of Ca-sulfate burial during the Toarcian oceanic anoxic event. Earth and Planetary Science Letters 622, 118404. (PDF)
[243] Jiang, J.X., Hu, X.M.*, Li, J., Garzanti, E., Jiang, S.J., Cui, Y., 2023. Eustatic change across the Paleocene-Eocene Thermal Maximum in the epicontinental Tarim seaway. Global and Planetary Change 229, 104241. (PDF)
[242] Lai, W., Liang, W.D., Hu, X.M.*, Garzanti, E., Lu, H.Y., Dong, X.L., Grain-size and compositional variability of Yarlung Tsangpo sand (Xigaze transect, south Tibet): Implications for sediment mixing by fluvial and aeolian processes. Journal of Palaeogeography 12(2), 195-210. (PDF)
[241] Liang, W.D., Hu, X.M.*, Garzanti, E., Wen, H.G., Hou, M.C., 2023, Petrographic composition and heavy minerals in modern river sand: A global database. Geoscience Data Journal, DOI: 10.1002/gdj3.219. (PDF)
[240] Liang, W.D., Hu,X.M.*, Garzanti,E., Dong,X.l., Zhang,Y.Q., 2023, Fluvial-aeolian interaction and compositional variability in the river-fed Yarlung Tsangpo dune system (southern Tibet). Journal of Geophysical Research: Earth Surface 128, e2022JF006920. doi. org/10.1029/2022JF006920.(PDF)
[239] Li, X., Hu, X.M.*, An, W., Liu, Q., Garzanti, E., Meng, J., 2023. From Neo-Tethyan convergence to India-Asia collision: radiolarian biostratigraphy of the Cretaceous to Paleocene deep-water Tethys Himalaya. Newsletters on Stratigaphy, 56 (1): 33-52.(PDF)
[238] Ma, A.L., Hu, X.M.*, Garzanti, E., Boudagher-Fadel, M., Xue, W.W., Han, Z., Wang, P., 2023, Paleogeographic and tectonic evolution of Mesozoic Qiangtang basins (Tibet). Tectonophysics 862, 229957. (PDF)
[237] Ma, A.L., Hu, X.M*, Garzanti, E., Pullen, A., BouDagher-Fadel, M., Ji, X.K., Wang, J.G., Lai, W., Xue., W.W., 2023. Mid-Cretaceous exhumation of the Central Qiangtang Mountain Range metamorphic rocks as evidenced by the Abushan continental redbeds, Tectonics 42, e2022TC007520. doi.org/10.1029/2022TC007520. (PDF)
[236] Pan, Y.D., Hu, X.M.*, 2023, A database of detrital zircon U–Pb geochronology and Hf isotopes from the Songpan–Ganzi and Western Qinling terranes. Geoscience Data Journal, doi.10.1002/gdj3.195. (PDF)
[235] Sun, G. Y., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., Xu, Y.W., Jiang, J.X., Wolfgring, E., Wang, Y.S., Jiang, S.J., 2023, Pre-Eocene Arabia-Eurasia collision: New constraints from the Zagros Mountains (Amiran Basin, Iran). Geology 51, 941-946, https://doi.org/10.1130/G51321.1. (PDF)
[234] Wen, D.J., Hu, X.M.*, Yu, J.H., Wang, X.L., Chapman, T., and Wang, R.Q., In Press. Origin of Late Cretaceous, enclave-bearing granitoids in southern Tibet: Implications for magma recharge and crustal thickening. GSA Bulletin, doi.org/10.1130/B36530.1. (PDF)
[233] Wen, D.J., Hu, X.M.*, Chapman, T., Zeng, G., Ma, A.L., Wang, R.Q., 2023. Late Cretaceous bimodal volcanic rocks in Shuanghu induced by lithospheric delamination beneath the Southern Qiangtang, Tibet. LITHOS 460–461, 107368. (PDF)
[232] Xue, W.W., Hu, X.M.*, Ma, A.L., Garzanti, E., Liang, W.D., Hao, L.L., Wang, Q. 2023. Oligocene orogen-parallel extension in southern Tibet during Indian continental subduction. Geophysical Research Letters, 50, e2023GL105193. doi.org/10.1029/2023GL105193. (PDF)
[231] Xue, W.W., Hu, X.M.*, Garzanti, E., Ma, A.L., Lai,W., Li, C., 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age and Hf isotope facies. Earth-Science Reviews 236, 104271. (PDF)
[230] Xu, Y.W., Hu, X.M.*, Han. Z., 2023. Carbonate Ontology and Its Application for Integrating Microfacies Data. Journal of Earth Science, 34(5): 1328–1338. (PDF)
[229] Xu, Y.W., Hu, X.M.*, Garzanti, E., Sun, G.Y., Jiang, J.X., Li, J., Zhang, S.J., Schlagintweit, F., Rao, X., 2023, Carbonate factories and their critical control on the geometry of carbonate platforms (mid-Cretaceous, southern Iran). Palaeogeography, Palaeoclimatology 625, 111680. (PDF)
[228] Xu, Y.W., Hu, X.M.*, Garzanti, E., Sun, G.Y., Jiang, J.X., Schlagintweit, F., 2023, Driver of eustatic change during the early Aptian Oceanic Anoxic Event 1a (~120 Ma). Global and Planetary Change 229, 104236. (PDF)
[227] Zhang, S.J., Hu, X.M.*, Zhang, J.R., Li, Q., Xu, Y.W., Yu, Y.Y., Han, L.Q., 2023, A database of detrital zircon U–Pb ages and Hf isotopic compositions from the Tarim, West Kunlun, Pamir, Tajik and Tianshuihai terranes. Geoscience Data Journal, DOI: 10.1002/gdj3.213.(PDF)
[226] 刘昕羽, 胡修棉*, 许艺炜, 蒋璟鑫, 孙高远. 2023. 伊朗Lurestan-Fars地区晚白垩世微相与沉积环境演化. 沉积学报 41(4): 1124-1137. (PDF)
[225] 张艺秋, 胡修棉*, 董小龙, 赖文. 2023, 定量表征河流砂颗粒的形状. 地质评论 69(6): 2203-2215. (PDF)
[224] 梁文栋, 胡修棉*. 2023, 现代河流沉积物碎屑及矿物组分研究新进展. 地质学报 97(09): 2975-2991. (PDF)
[223] 潘应娣, 胡修棉*, 马安林, 梁文栋. 2023, 班公湖—怒江缝合带同碰撞海沟盆地砂岩物源分析及其大地构造意义.地质学报 97(09): 2992-3005. (PDF)
[222] 翁晓爱, 姜守一, 韩中, 胡修棉, 晏雄. 2023. 藏南 Kioto 碳酸盐台地对早侏罗世普林斯巴晚期碳循环扰动的沉积和生物响应. 沉积学报. doi.org/10.14027/j.issn.1000-0550.2023.078. (PDF)
[221] 陈臻, 王丽娟, 李娟, 何佳伟, 杨用彪, 邓涛, 关俊朋, 龚海艇, 胡修棉. 2023. 下扬子早古生代碳酸盐岩微相与沉积环境演化. 沉积学报. doi.org/10.14027/j.issn.1000-0550.2023.026. (PDF)
[220] Hu, X.M.* , Ma, A.L, Xue, W.W., Garzanti, E., Cao, Y., Li, S.M., Sun, G.Y., Lai, W., 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, doi.org/10.1016/j.earscirev.2022.104031. (PDF)
[219] GholamiZadeh, P., Hu, X.M., Garzanti, E., Hossein Adabi, M., 2022. Constraining the timing of Arabia-Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran). GSA Bulletin 134, 1793-1810. (PDF)
[218] Jiang, J.X., Hu, X.M.*, Garzanti, E., Marcelle K, B.F., Sun, G,Y., Xu, Y.W., 2022, Enhanced storm-induced turbiditic events during early Paleogene hyperthermals (Arabian continental margin, SW Iran). Global and Planetary Change 214, 103832. (PDF)
[217] Han, Z., Hu, X.M.*, Hu, Z.Y., Jenkyns, H.C., Su., T.H., 2022. Geochemical evidence from the Kioto Carbonate Platform (Tibet) reveals enhanced terrigenous input and deoxygenation during the early Toarcian. Global and Planetary Change 215, 103887. (PDF)
[216] Han, Z., Hu, X.M.*, He, T.C., Newton, R.J., Jenkyns, H.C., Jamieson, R.A., Franceschi, M., 2022. Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya. Earth and Planetary Science Letters. 578, 117261, doi.org/10.1016/j.epsl.2021.117261. (PDF)
[215] Lai, W., Hu, X.M.*, Ma, A.L., Garzanti, E., Xu, Y.W., 2022. From the southern Gangdese Yeba arc to the Bangong-Nujiang Ocean: Provenance of the Upper Jurassic-Lower Cretaceous Lagongtang Formation (northern Lhasa, Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology 588, 110837. (PDF)
[214] Liang, W.D., Garzanti, E., Hu, X.M.*, Resentini, A., Vezzoli, G., Yao, W.S., 2022, Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block. Basin Research 34, 411–439. https://doi.org/10.1111/bre.12625. (PDF)
[213] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., 2022. Spatial heterogeneity in carbonate-platform environments and carbon isotope values across the Paleocene–Eocene thermal maximum (Tethys Himalaya, South Tibet). Global and Planetary Change 214, 103853. (PDF)
[212] Xue, W.W., Najman, Y., Hu, X.M.*, Garzanti, E., Stuart, F.M., Li, W., M, A.L., Wang, Y., 2022. Late Cretaceous to Late Eocene exhumation in the Nima area, central Tibet: Implications for development of low relief topography of the Tibetan Plateau. Tectonics 41, e2021TC006989. doi.org/10.1029/2021TC0069890. (PDF)
[211] Xu, Y.W., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., Sun, G.Y., Lai, W., 2022. Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? GSA Bulletin 134, 289-404. doi.org/10.1130/B35930.1. (PDF)
[210] Wang, Y.S., Jiang,S.J., Hu, X.M., Li,J., Kulhanek, D.K., Pospichal, J.J., Watkins, D.K., 2022. Lower Cretaceous calcareous nannofossils and their biostratigraphic and paleoceanographic implications in Southern Tibet. Marine Micropaleontology 175,102159. (PDF)
[209] Chen, L., Zheng, Y.F., Zhao, Z.F., An, W., Hu, X.M., 2022. Continental crust recycling in ancient oceanic subduction zone: Geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414-415, 106619. (PDF)
[208] Hu, X.B., Hu, Z.C., Jiang, J.L., Xue.W.W., Hu, X.M., Xu. X.L., 2022. Character embedding‑based Bi‑LSTM for Zircon similarity calculation with clustering. Earth Science Informatics 15, 1417-1425. (PDF)
[207] Wang, Y.S., Cui, Y., Su H., Jiang, J.X., Wang,Y., Yang, Z.L., Hu, X.M., Jiang, S.J.,2022. Response of calcareous nannoplankton to the Paleocene–Eocene ThermalMaximum in the Paratethys Seaway (Tarim Basin, West China). Global and Planetary Change 217, 103918. (PDF)
[206] 胡修棉. 2022. 中国水系固体物质研究进展. 沉积学报 40, 4. (PDF)
[205] 董小龙, 胡修棉*, 郭荣华, 赖文. 2022. 河流砂碎屑统计方法的对比实验研究. 沉积学报 40(4): 871-882. (PDF)
[204] 李超, 胡修棉*. 2022. 宁芜盆地中三叠统黄马青组是大别造山带最早剥露的记录. 高校地质学报 28(4): 527-538. (PDF)
[203] 张艺秋, 胡修棉*. 2022. 河流砾—砂过渡(GST)研究进展. 沉积学报 40(4): 883-893. (PDF)
[202] 王学天, 邵龙义, Eriksson, K.A., 胡修棉, 刘钦甫, 鲁静. 2022. 基于定量古地理的BQART 模型深时古地势重建方法——以晚二叠世峨眉山大火成岩省内带为例. 沉积学报 40(60): 1461-1480. (PDF)
[201] 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题. 地质学报 96(1): 66-94. (PDF)
[200] 董云鹏, 任建国, 张志飞, 邓军, 郭安林, 张兴亮, 胡修棉, 王强, 李建威, 邱楠生, 孙有斌, 赵国春, 张进江, 彭建兵, 林杨挺, 初航, 吕大炜. 2022. 地质学科未来5~10年发展战略: 趋势与对策. 科学通报 67(23): 2708-2718. (PDF)
[199] Akdoğan, R., Hu, X.M.*, Okay, A.I., Topuz, G., Xue, W.W., 2021, Provenance of the Paleozoic to Mesozoic Siliciclastic Rocks of the Istanbul Zone Constrains the Timing of the Rheic Ocean Closure in the Eastern Mediterranean Region. Tectonics, 10.1029/2021TC006824. (PDF)
[198] An, W., Hu, X.M.*, Garzanti, E., Wang, J.G., Liu, Q., 2021. New Precise Dating of the India-Asia Collision in theTibetan Himalaya at 61 Ma. Geophysical Research Letters, 10.1029/2020GL090641. ( PDF)
[197] Guo, R.H., Hu, X.M.*,Garzanti, E., Lai, W., 2021. Boron isotope composition of detrital tourmaline: A new tool in provenance analysis , Lithos 400-401, 106360. ( PDF)
[196] Han, Z., Hu, X.M.*, BouDagherFadel, M., Jenkyns, H.C., Franceschi, M., 2021. Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere , Newsletters on Stratigraphy 54, 461-481. ( PDF)
[195] Jiang, J.X., Hu, X.M.*, Li, J., BouDagher-Fadel, M., Garzanti, E., 2021. Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux. Palaeogeography, Palaeoclimatology, Palaeoecology 562, 110095. (PDF)
[194] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., 2021. SClimate-driven hydrological change and carbonate platform demise induced by the Paleocene–Eocene Thermal Maximum (southern Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology 567, 110250. ( PDF)
[193] Wen, D.J. ,Hu, X.M.*, Qu, J.S., Yu, J.H., Wang, R.Q., He, Z.Y., Li, Y.F., 2021. Petrogenesis of early Eocene granites and associated mafific enclaves in the Gangdese batholith, Tibet: Implications for net crustal growth in collision zones. Lithos 394-395, 106170.(PDF)
[192] Tang, Y.L., Shi, Y., Hu, X.M., Liu, X.J., Huang, C.W., 2021. Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai Orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block. Journal of Asian Earth Sciences 220,104906. ( PDF)
[191] Liu, Q., Kneller, B., An, W., Hu, X.M.*, 2021. Sedimentological responses to initial continental collision:triggering of sand injection and onset of mass movement in a syn-collisional trench basin,Saga,southern Tibet, Journal of the Geological Society, https://doi.org/10.1144/jgs2020-178.(PDF)
[190] Yuan, J., Yang, Z.Y., Dong, C.L., Ktijgsman,W., Hu, X.M.,Li, S.H., et al., 2021. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asiacollision. National Science Review 8, nwaa173. (PDF)
[189] Zhou, C.H., Wang, H., Wang, C.S., Hou, Z.Q., Zheng, Z.M., Shen, S.Z., Cheng, Q.M., Feng, Z.Q., Wang, X.B., Lv, H.R., Fan, J.X., Hu, X.M., Hou, M.C., Zhu, Y.Q., 2021. Geoscience knowledge graph in the big data era. Science China Earth Sciences 64, 1105–1114. ( PDF)
[188] Giovanni, C., Luca, M., Garzanti, E., Sirio, C., Giulia, B., Giovanni, V., Hu, X.M., Daniela, B., 2021. keletal assemblages and terrigenous input in the Eocene carbonate systems of the Nummulitic Limestone (NW Europe), Sedimentary Geology 425, 106005. ( PDF)
[187] Wang, C.S., Hazen, R. M., Cheng, Q.M., Stephenson, M.H., Zhou, C., Fox, P., Shen, S.Z., Oberhansli, R., Hou, Z.Q., Ma, X.G., Feng, Z.Q., Fan, J.X., Ma, C., Hu, X.M., Luo, B., Wang, J.L., Schiffries, C.M., 2021. The Deep-Time Digital Earth program: data-driven discovery in geosciences, National Science Review 8(9), nwab027. (PDF)
[186] 胡修棉*, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报 95(1):139-158.(PDF)
[184] 李伟, 胡修棉*, Melinte-Dobrinescu M., BouDagher-Fadel M., 2021. 塔里木海齐姆根剖面早古近纪极热事件及其环境效应. 科学通报 66,1067-1082.(PDF)
[183] 马安林, 胡修棉*, 2021. 沉积记录约束班公湖—怒江缝合带东巧蛇绿岩的仰冲过程. 沉积与特提斯地质 41(2):163-175. ( PDF)
[182] 张世杰, 胡修棉*, 郜周全, 赵永强, 马安林, 许艺炜, 2021. 西昆仑山古近纪隆升形:时间、证据和争论. 地质评论 67(4): 1057-1076. ( PDF)
[181] 郝慧珍, 顾庆, 胡修棉*, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学 46 (9): 3091-3106.(PDF)
[180] 何国建,胡修棉,楼法生,陈浩鹏,杨晓飞,陈建中,吴春伟,张密椋.2021. 喀喇昆仑北羌塘地体加勒万河地区中-基性岩地球化学与年代学研究.中国地质.
https://kns.cnki.net/kcms/detail/11.1167.P.20210301.1826.017.html. (PDF)
[179] 马鹏飞, 刘志飞, 拓守廷, 蒋璟鑫, 许艺炜, 胡修棉. 2023. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义. 地球科学进展 36(6): 643-662. (PDF)
[178] 周成虎, 王华, 王成善, 侯增谦, 郑志明, 沈树忠, 成秋明, 冯志强, 王新兵, 闾海荣, 樊隽轩, 胡修棉, 侯明才, 诸云强. 2021. 大数据时代的地学知识图谱研究展望. 中国科学: 地球科学 51, doi: 10.1360/SSTe-2020-0337. ( PDF)
《岩石显微图像专题》
[177] 胡修棉, 赖文, 许艺炜, 等. 沉积岩显微数字图像数据的获取与信息收集标准. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0008.zh. (PDF)
[176] 赖文, 蒋璟鑫, 邱检生, 等. 南京大学岩石教学薄片显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0071.zh. (PDF)
[174] 李娟, 胡修棉. 藏南特提斯喜马拉雅带晚白垩世–早古近纪碳酸盐岩显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0072.zh. ( PDF)
[173] 张世杰, 胡修棉. 新疆塔里木盆地西部晚白垩世–始新世岩石薄片偏光显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0010.zh. ( PDF)
[172] 许艺炜, 胡修棉, 孙高远. 北拉萨地体白垩纪郎山组岩石薄片显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0049.zh.( PDF)
[170] 赖文, 张艺秋, 胡修棉, 等. 拉萨地体中–北部白垩纪陆源碎屑岩显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0009.zh. ( PDF)
[168] Hu, X.M.*, An, W., Garzanti, E., Liu, Q., 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China Earth Sciences 63, 2017-2028.(PDF).
[167] Hu, X.M.*, Li, J., Han, Z., Li, Y.X., 2020. Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms. Science China Earth Sciences 63, 1041–1058. (PDF)
[166] Guo, R.H., Hu, X.M.*, Garzanti, E., Lai, W., Yan, B., Mark, C., 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon,titanite, rutile and monazite record magmatic andmetamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews 201, 103082. (PDF)
[165] Li, C., Hu, X.M.*, Wang, J.G., Vermeesch, P., Garzanti, E., 2020. Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continentalarc in South China. Tectonophysics 780, 22840. https://doi.org/10.1016/j.tecto.2020.228400. (PDF)
[164] Li, J., Hu, X.M.*, Garzanti, E., Banerjee, S., BouDagher-Fadel, M., 2020. Late Cretaceous topographic doming caused by initial upwelling of Deccan magmas: Stratigraphic and sedimentological evidence. GSA Bulletin, 132 (3-4): 835–849.(PDF)
[163] Li, J., Hu, X.M.*, Zachos, J.C., Garzanti, E., BouDagher-Fadel, M., 2020. Sea level,biotic and carbon-isotope response to the Paleocene–Eocene thermal maximum in Tibetan Himalayan platform carbonates. Global and Planetary Change, 103316. (PDF)
[162] Ma, A.L., Hu, X.M., Kapp, P., BouDagher-Fadel, M., Lai, W., 2020. Pre‐Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet. Geophysical Research Letters. 10.1029/2019GL08665. (PDF)
[161] Ma, A.L., Hu, X.M.*, Kapp, P., Lai, W., Han, Z., Xue, W.W., 2020. Mesozoic Subduction Accretion History in Central Tibet Constrained From Provenance Analysis of the Mugagangri Subduction Complex in the Bangong‐Nujiang Suture Zone. Tectonics, 1-22.(PDF)
[160] Xue, W.W., Hu, X.M., Ma, A.L., Gareznti, E., Li, J., 2020. Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system .Marine and Petroleum Geology, 104558.(PDF)
[159] Xu, Y.W., Hu, X.M.*, BouDagher-Fadel, M., Su, G.Y., Lai, W., Li, J., Zhang, S.J., 2020. The major late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet. Geological Society, London, Special Publication 498, 211-232.(PDF)
[158] Zhou, X.H., Hu, X.M., Jiang, R., Gao, T.S., Ma, X., Xing, G.F., Sun, G.Y., Shu, X.J., Zhao, X.L., 2020. Sedimentary Facies, Provenance and Geochronology of the Heshangzhen Group: Implications for the Tectonic Evolution of the Eastern Jiangnan Orogen, South China. Acta Geologica Sinica 94, 1138-1158.(PDF)
[157] 胡修棉*, 安慰, Garzanti E, 刘群. 2020. 碰撞造山带海沟盆地的识别——以雅鲁藏布缝合带为例. 中国科学: 地球科学 50, 1893-1905. (PDF)
[156] 胡修棉*, 李娟, 韩中, 李永祥. 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学: 地球科学 50(8), 1023-1043.(PDF)
[155] 刘昕羽, 胡修棉*, 李娟. 2020. 白垩纪大洋缺氧事件与富氧事件. 自然杂志 42(4), 347-354.(PDF)
[154] 许艺炜, 胡修棉*. 2020. 深时全球海平面变化重建方法的回顾与展望. 高校地质学报 26(4), 395-410.(PDF)
[153] 傅焓埔, 刘群, 胡修棉*. 2020. 水下沉积物重力流与海底扇相模式研究进展.地球科学进展 35(2), 124-136.(PDF)
[152] 蒋璟鑫, 李超, 胡修棉*. 2020. 沉积学数据库建设与沉积大数据科学研究进展:以Macrostrat数据库为例. 高校地质学报 26, 27-43. (PDF)
[151] 薛伟伟, 马安林, 胡修棉*. 2020. 羌塘盆地侏罗系—白垩系岩石地层格架厘定. 地质论评 66(5), 1114-1129.(PDF)
[150] Chen, Z.Q., Hu, X.M.*, Montañez, I.P., Ogg, J.G., 2019. Sedimentology as a key to undersyanding earth and life processes. Earth-Science Reviews 189,1-5. (PDF)
[149] Lai, W.,Hu, X.M., Garzanti, E., Sun, G., Garzione, C.N., BouDagher-Fadel, M., Ma, A.L., 2019. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 131, 1823-1836. (PDF)
[148] Lai, W., Hu, X.M.*, Garzanti, E., Xu, Y.W., Ma, A.L., Li, W., 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research 73, 136-152. (PDF)
[147] Sun, G.Y., Hu, X.M., Xu,Y.W., BouDagher-Fadel, M.K., 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics 750, 344-358. (PDF)
[146] Zhang, S.J., Hu, X.M.*, Garzanti, E., 2019. Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin. Tectonophysics 772,1-16. (PDF)
[145] Hao, H.Z., Guo, R.H., Gu., Q., Hu, X.M., 2019. Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Minerals Engineering 147, https://doi.org/10.1016/j.mineng.2019.105899. (PDF)
[144] Li, N., Hao, H.Z., Jiang, Z.W., Jiang, F., Guo, R.H., G, Q., Hu, X.M., 2019. A multi-task multi-class learning method for automatic identification of heavy minerals from river sand. Computers & Geosciences 135, 104403. (PDF)
[143] 叶加鹏, 胡修棉*, 孙高远, BouDagher-Fadel, K.M., 2019. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma). 科学通报 64,1620-1636. (PDF)
[142] An, W., Hu, X.M.*, Garzanti, E., 2018. Discovery of Upper Cretaceous Neo-Tethyan trench deposits in south Tibet (Luogangcu Formation). Lithosphere 10, 446-459. (PDF)
[141] Fu, H.P., Hu, X.M.*, Crouch, E.M., An, W., Wang, J.G., Garzanti, E., 2018. Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Science China Earth Sciences 61, 1204-1220. (PDF)
[140] Han, Z., Hu, X.M.*, Kemp, D.B., Li, J., 2018. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise. Earth and Planetary Science Letters 489, 59-71. (PDF)
[139] Zhang, S.J., Hu, X.M.*, Han, Z., Li, J., Garzanti, E., 2018. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea. Palaeogeography Palaeoclimatology Palaeoecology 501, 92-110. (PDF)
[138] Ma, A.L., Hu, X.M., Kapp. P., Han. Z., Lai. W., BouDagher-Fadel, M., 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography Palaeoclimatology Palaeoecology 506, 30-47. (PDF)
[137] Ma, A.L., Hu, X.M.*, 2018. Reply to Comment by W.-Y.Chen et al. on “Sedimentary and Tectonic Evolution of the Southem Qiangtang Basin:Implication for the Lhasa-Qiangtang Collision Timing”. Journal of Geophysical Research: Solid Earth 123, 7343-7346. (PDF)
[136] Jiang, F., Gu, Q., Hao, H.Z., Li, N.,Wang, B.Q., Hu, X.M., 2018. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone. Computers and Geosciences 115, 143-153. (PDF)
[135] 胡修棉, 2018. 板块构造理论的先行者——William R.Dickinson教授成就解读. 中国科学: 地球科学, 48, 1267-1274. (PDF)
[134] 傅焓埔, 胡修棉*, Crouch, E.M., 安慰 王建刚, Garzanti, E., 2018. 西藏雅鲁藏布缝合带甲查拉组: 晚白垩世新特提斯洋海沟沉积? 中国科学: 地球科学 48, 1275-1292. (PDF)
[133] 周博, 胡修棉*, 安慰, 马安林, 赖文, 2018. 印度-亚洲大陆碰撞初期的海沟沉积: 藏东南宗卓组沉积岩石学与物源分析. 地质学报 92, 1-14. (PDF)
[132] 孙高远, 王建刚, 胡修棉, BOUDAGHER-FADAL, M.K., 2018. 西藏札达地区上白垩统-下始新统达机翁组:对冈底斯弧前盆地演化的制约. 岩石学报 34, 1847-1861. (PDF)
[131] Hu, X.M.*, Wang, J.G., An, W., Garzanti, E., Li, J., 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China-Earth Sciences 60, 603-625. (PDF)
[130] Hu, X.M., Wagreich, M., Sames, B., 2017. Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes. Science China-Earth Sciences 60, 1-4. (PDF)
[129] An, W., Hu, X.M.*, Garzanti, E., 2017. Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India-Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Research 41,222-234. (PDF)
[128] BouDagher-Fadel, M.K., Hu, X.M., Price, G.D., Sun, G.Y., Wang,J.G., An, W., 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-cretaceous limestones in the southern Tibetan Plateau. Journal of Foraminiferal Research 47(2), 188-207. (PDF)
[127] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., 2017. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Palaeogeography Palaeoclimatology Palaeoecology 466, 153-165. (PDF)
[126] Lai, W., Hu, X.M.*, Zhu, D.C., An, W., Ma, A.L., 2017. Discovery of the Early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean? International Journal of Earth Sciences 106, 1277-1288. (PDF)
[125] Ma, A.L., Hu, X.M., Garzanti, E., Han, Z., Lai, W., 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research-Solid Earth 122, 4790-4813. (PDF)
[124] Sun, G.Y., Hu, X.M.*, Sinclair, H.D., 2017. Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 101-118. (PDF)
[123] Wang, J.G., Hu, X., Garzanti, E., An, W., Liu, X.C., 2017a. The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sc Lett 465, 38-47. (PDF)
[122] Wang, J.G., Hu, X.M., Garzanti, E., Ji, W.Q., Liu, Z.C., Liu, X.C., Wu, F.Y., 2017. Early Cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research-Solid Earth 122, 5748-5765. (PDF)
[121] Li, N., Hao, H.Z., Gu, Q., Wang, D.R., Hu, X.M., 2017. A transfer learning method for automatic identification of sandstone microscopic images. Computers & Geosciences 103, 111-121. (PDF)
[120] Huang, W.T., Lippert, P.C., Zhang, Y., Jackson, M.J., Dekkers, M.J., Li, J., Hu, X.M., Zhang, B., Guo, Z.J., van Hinsbergen, D.J.J., 2017. Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research-Solid Earth 122, 2434-2456. (PDF)
[119] Huang, W.T., Lippert, P.C., Jackson, M.J., Dekkers, M.J., Zhang, Y., Li, J., Guo, Z.J., Kapp, P., van Hinsbergen, D. J. J., 2017. Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision. Journal of Geophysical Research-Solid Earth 122, 808-825. (PDF)
[118] 胡修棉, 李娟, 安慰, 王建刚, 2017. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分. 地学前缘, 24, 174-194. (PDF)
[117] 胡修棉, 2017. 物源分析的一个误区:沙粒在河流搬运过程中的变化. 古地理学报, 19, 175-183. (PDF)
[116] 胡修棉*, 王建刚, 安慰, Garzanti, E., 李娟, 2017. 利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程. 中国科学: 地球科学 47, 261-283. (PDF)
[115] 孙高远, 胡修棉*, 2017. 拉萨地体中部上白垩统达雄组的建立及构造隆升意义. 地质学报 91. 2623-2637. (PDF)
[114] 李超, 吕璇, 胡修棉*, 于津海, 孙高远, 2017. 下扬子砂岩物源分析提供东南沿海晚古生代大陆弧新证据. 科学通报 62, 2951-2966. (PDF)
[113] 许艺炜, 黄燕, 胡修棉, 杨江海, 2017. 显生宙深时气候研究热点问题的文献计量分析. 沉积学报 35, 994-1003. (PDF)
[112] 张波兴, 李永祥, 胡修棉, 2017. 藏南床得剖面古地磁结果对印度-亚洲碰撞方式的约束. 科学通报 62, 298-314. (PDF)
[111] Hu, X.M.*, Garzanti, E., Wang, J. G., Huang, W. T., An, W., Webb, A., 2016. The timing of India-Asia collision onset - Facts, theories, controversies. Earth-Science Reviews 160, 264-299. (PDF)
[110] Hu, X.M.*, Wang, J.G., BouDagher-Fadel, M., Garzanti, E., An, W., 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research 32, 76-92. (PDF)
[109] Han, Z., Hu, X.M.*, Li, J., Garzanti, E., 2016. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeography Palaeoclimatology Palaeoecology 456, 1-20. (PDF)
[108] Li, J., Hu, X.M.*, Zhao, K.D., Cai, Y.F., Sun, T., 2016. Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy). Cretaceous Research 66, 115-128. (PDF)
[107] Wang, J.G., Wang, J.G., Wu, F.Y., Garzanti, E., Hu, X.M., Ji, W.Q., Liu, Z.C., Liu, X.C., 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research 34, 84-98. (PDF)
[106] Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M.C., Hu, X.M., Wendler, I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O., 2016. Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 393-411. (PDF)
[105] Hu, X.M.*, Garzanti, E., An, W., 2015. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology. Journal of Palaeogeography-English Edition 4, 85-98. (PDF)
[104] Hu, X.M.*, Garzanti, E., Moore, T., Raffi, I., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859-862. (PDF)
[103] Garzanti, E., Hu, X.M.*, 2015. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Research 28, 165-178.(PDF)
[102] Li, J., Hu, X.M.*, Garzanti, E., An, W., Wang, J.G., 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental collision. Journal of Asian Earth Sciences 104, 39-54. (PDF)
[101] Huang, W.T. et al., 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry Geophysics Geosystems 16, 77-100. (PDF)
[100] Sun, G.Y., Hu, X.M.*, Sinclair, H.D., BouDagher-Fadel, M.K., Wang, J.G., 2015. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. GSA Bulletin 127, 1001-1021. (PDF)
[99] Sun, G.Y., Hu, X.M.*, Zhu, D.C., Hong, W.T., Wang, J.G., Wang, Q., 2015. Thickened juvenile lower crust-derived ~90 Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithosphere 224, 225-240. (PDF)
[98] Wang, J.G., Hu, X.M.*, BouDagher-Fadel, M.K., Wu, F.Y., Sun, G.Y., 2015. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India-Asia collision. Sedimentary Geology, 315, 1-13. (PDF)
[97] BouDagher-Fadel, M.K., Price, G.D., Hu, X.M., Li, J., 2015. Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme. Stratigraphy 12, 67-91. (PDF)
[96] 胡修棉*, 2015. 东特提斯洋晚中生代—古近纪重大事件研究进展. 自然杂志 37, 93-102. (PDF)
[95] 李世毅, 姜迪, 赵莹莹, 胡修棉*, 史宇坤, 2015. 安徽巢湖地区石炭纪-早二叠世碳酸盐岩微相与沉积环境. 沉积与特提斯地质 35, 3-15. (PDF)
[94] Hu, X.M.*, An, W., Wang, J.G., Garzanti, E., Guo, R.H., 2014. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics 621, 60-68. (PDF)
[93] An, W., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., Wang, J.G., Sun, G.Y., 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin 12, 1595-1613. (PDF)
[92] He, L.F., Hu, X.M., Zha, Y.B., Xu, L.G., Wang, Y.H., 2014. Distribution and origin of high magnetic anomalies at Luobusa ophiolite in southern Tibet. Chinese Science Bulletin 59, 2898-2908. (PDF)
[91] Wang, J.G., Wu, F.Y., Tan, X.C., Liu, C.Z., 2014. Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612, 97-105. (PDF)
[90] 何兰芳, 胡修棉, 查亚兵, 徐礼贵, 王耀辉, 2014. 藏南罗布莎蛇绿岩高磁异常分布特征与成因. 科学通报 59, 960-969. (PDF)
[90] Wang, J.G., Hu, X.M.*, Garzanti, E., Wu, F.Y., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze area, southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo initiation. Journal of Geology 121, 425-444. (PDF)
[89] Yu, J.H., Liu, Q., Hu. X.M., Wang, Q., Y, O.R.S., 2013. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny? . Chinese Science Bulletin 58, 788-795. (PDF)
[88] 胡修棉, 2013. 显生宙海相红层的分布、类型与成因机制. 矿物岩石地球化学通报 3, 335-342. (PDF)
[87] 李娟, 胡修棉*, 2013. 藏南定日地区上三叠统-古近系构造沉降分析与沉积盆地特征. 岩石学报 29, 3843-3851. (PDF)
[86] Hu, X.M.*, 2012. Testing the validity of Nd isotopes as a provenance tool in southern Tibet for constraining the initial India-Asia collision. Journal of Asian Earth Sciences 53, 51-58. (PDF)
[85] Hu, X.M.*, Scott, R.W., Cai, Y.F., Wang, C.S., Melinte-Dobrinescu, M.C., 2012. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth-Science Reviews 115, 217-248. (PDF)
[84] Hu, X.M.*, Sinclair, H.D., Wang, J.G., Jiang, H.H., Wu, F.Y., 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision. Basin Research 24, 520-543. (PDF)
[83] Hu, X.M.*, Wagreich, M., Yilmaz, I.O., 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research 38, 1-6. (PDF)
[82] Hu, X.M.*, Hu, Z.C., Wang, J.G., Yu, J.H., Xu, K.D., Jansa, L., Hu,W.X., 2012. Geology of the Fuding inlier in southeastern China: Implication for late Paleozoic Cathaysian paleogeography. Gondwana Research 22, 507-518. (PDF)
[81] Hu, X.M.*, Zhao, K.D., Yilmaz, I.O., Li, Y.X., 2012. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretaceous Research 38, 40-51. (PDF)
[80] He, L.F., Hu, X.M., Xu, L.G., He, Z.X., Li, W.L., 2012. Feasibility of monitoring hydraulic fracturing using time-lapse audio-magnetotellurics. Geophysics 77, 119-126. (PDF)
[79] Li, X., Cai, Y.F., Hu, X.M., Huang, Z.C., Wang, J.G., 2012. Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals 47, 45-58. (PDF)
[78] 安慰, 胡修棉, 王建刚, 2012. 藏南日喀则弧前盆地帕达那组沉积相分析. 沉积学报 30, 619-625. (PDF)
[77] 郭荣华, 胡修棉*, 王建刚, 2012. 日喀则弧前盆地碎屑铬尖晶石地球化学与物源判别. 地学前缘 19, 213-220. (PDF)
[76] 孙高远, 胡修棉*, 2012. 仲巴地体的板块亲缘性_来自碎屑锆石U_Pb年代学和Hf同位素的证据. 岩石学报 28, 1635-1646. (PDF)
[75] 于津海, 刘潜, 胡修棉, 王勤, Y,O.R.S., 2012. 华南晚古生代岩浆活动的新发现:岛弧还是陆内造山? 科学通报 57, 2964-2971. (PDF)
[74] Li, X., Hu, X.M.*, Cai, Y.F., Han, Z.Y., 2011. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic. Sedimentary Geology 235, 91-99. (PDF)
[73] Wang, C.S., Hu, X.M.*, Huang, Y. J., Wagreich, M., Scott, R., Hay, W., 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology 235, 27-37. (PDF)
[72] Wang, J.G., Hu, X.M.*, Jansa, L., Huang, Z.C., 2011. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet: Constraints on the Timing of Initial India-Asia Collision. Journal of Geology 119, 293-309. (PDF)
[71] Wagreich, M., Hu, X.M., Sageman, B., 2011. Causes of oxic–anoxic changes in Cretaceous marine environments and their implications for Earth systems—An introduction. Sediment Geol 235, 1-4. (PDF)
[70] 孙高远, 胡修棉*, 王建刚, 2011. 藏南江孜县白沙地区宗卓混杂岩:岩石组成与物源区分析. 地质学报 85,1343-1351. (PDF)
[69] 李响, 蔡元峰, 胡修棉, 黄志诚, 王建刚, 耿建华, 2011. 藏西南札达白垩纪Albian期海绿石的矿物学特征及地质意义. 地质论评 57,63-72. (PDF)
[68] 吴聪, 史宇坤, 胡修棉, 2011. 藏南定日上白垩统平行不整合界线及其浮游有孔虫时代约束. 微体古生物学报 28, 381-402. (PDF)
[67] Hu, X.M.*, Jansa, L., Chen, L., Griffin, W. L., O'Reilly, S.Y., Wang, J. G., 2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology 223, 193-205. (PDF)
[66] Wang, J.G., Hu, X.M.*, Wu, F.Y., Jansa, L., 2010. Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology 231, 74-84 (PDF)
[65] 王成善, 郑和荣, 冉波, 刘本培, 李祥辉, 李亚林, 孙红军, 陈建平, 胡修棉, 2010. 活动古地理重建的实践与思考——以青藏特提斯为例. 沉积学报 28, 849-860. (PDF)
[64] 张晓峰, 胡修棉, 王成善, 2010. 藏南白垩纪缺氧与富氧沉积的稀土元素地球化学特征. 矿物岩石地球化学通报 29, 173-180. (PDF)
[63] Hu, X.M., Chen, W., Ji, J., 2009, Origin of the Cretaceous Oceanic Red Beds from the Vispi Quarry Section, Central Italy:visible reflectance and inorganic geochemistry.SEPM Special Publication 91, 183-197. (PDF)
[62] Wang, C.S., Hu, X.M., Huang, Y.J., Scott, R.W., and Wagreich, M., 2009, Cretaceous Oceanic Red Beds (CORB): A Window on Global Oceanic/Climatic Change:Cretaceous Oceanic Red Beds. SEPM Special Publication 91, 13-33. (PDF)
[61] Cai, Y.F., Li, X., Hu, X.M., Chen, X.M., Pan, Y.G., 2009. Paleoclimatic approach to the origin of the coloring of Turonian pelagic limestones from the Vispi Quarry section (Cretaceous, central Italy). Cretaceous Research 30, 1205-1216. (PDF)
[60] Li, G.B., Jiang, G.Q., Hu, X.M., Wan, X.Q., 2009. New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China, and their paleogeographic and paleoceanographic implications. Cretaceous Research 30, 1005-1018. (PDF)
[59] Jiang, S.Y., Jansa, L., Skupien, P., Yang, J.H., Vasicek, Z., Hu, X.M., Zhao, K.D., 2009. Geochemistry of intercalated red and gray pelagic shales from the Mazak Formation of Cenomanian age in Czech Republic. Episodes 32, 3-12. (PDF)
[58] Hu, X.M., Jansa, L., Wang, C.S., 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research 29, 301-315. (PDF)
[57] 韩志艳, 胡修棉, 季峻峰, 黄永建, 黄志诚, 2008. 北大西洋ODP1049C孔Aptian-Albian期高频旋回大洋红层的成因: 矿物学证据. 地质学报 82, 124-132. (PDF)
[56] 王建刚, 胡修棉, 2008. 砂岩副矿物的物源区分析新进展. 地质论评 54, 670-678. (PDF)
[55] 王建刚, 胡修棉, 黄志诚, 2008. 藏南桑单林地区晚白垩世—始新世砂岩物源区分析. 地质学报 82, 92-103. (PDF)
[54] 程文斌, 顾雪祥, 胡修棉, 李有核, 董树义, 2008. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比. 地质学报 82, 37-41. (PDF)
[53] 陈曦, 王成善, 胡修棉, 黄永建, 2008. 西藏江孜地区海相白垩系铁赋存状态及古海洋意义. 地质学报 82, 77-84.(PDF)
[52] 陈曦, 王成善, 胡修棉, 黄永建, 魏玉帅, 王平, 2008. 西藏南部江孜盆地上侏罗统至古近系沉积岩石学特征与盆地演化. 岩石学报 24, 616-624. (PDF)
[51] 傅培刚, 宋之光, 胡修棉, 王成善, 2008. 藏南白垩系黑-红层沉积岩有机质组成分布特征. 地质学报 82, 85-91. (PDF)
[50] 蔡元峰, 李响, 潘宇观, 胡修棉, 2008. Mn~(2+)和Fe~(3+)的致色作用: 来自意大利白垩纪远洋红色灰岩的启示. 地质学报 82, 133-138. (PDF)
[49] Huang, Y.J., Wang, C.S., Hu, X.M., Chen, X., 2007. Burial Records of Reactive Iron in Cretaceous Black Shales and Oceanic Red Beds from Southern Tibet. Acta Geologica Sinica (English Edition) 81, 463-469. (PDF)
[48] Li, Y.L., Wang, C.S., Hu, X.M., M.Bak., Wang, J.J., Chen, L., 2007. Characteristics of Early Eocene radiolarian assemblages of the Saga area, southern Tibet and their constraint on the closure history of the Tethys. Chinese Science Bulletin 52, 2108-2114. (PDF)
[47] Li, G.B., Wan, X.Q., Jiang, G.Q., Hu, X.M., Nicolas, G., Hang, H.D., Chen, X., 2007. Late Cretaceous Foraminifera melange in Southern Tibet. Acta Geol Sin-Engl 81, 917-924. (PDF)
[46] 胡修棉, 王成善, 2007. 白垩纪大洋红层:特征、分布与成因. 高校地质学报 13, 1-13. (PDF)
[45] 陈蕾, 胡修棉, 黄志诚, 2007. 藏南早白垩世火山岩屑砂岩对印度大陆北缘火山事件的约束. 地质学报 81, 501-510. (PDF)
[44] 李亚林, 王成善, 胡修棉, M Bak, 王进军, 陈蕾, 李祥辉, 2007. 西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束. 科学通报 52, 1430-1435. (PDF)
[43] 李亚林, 王成善, 胡修棉, M Bak, 王立成, 王进军, 陈蕾, 2007. 西藏萨嘎地区构造岩石地层新认识及其构造意义. 矿物岩石 27, 55-62. (PDF)
[42] 李祥辉, H.C. Jenkyns, 王成善, 胡修棉, 赵兵, 黄永建, 2007. 西藏南部晚白垩世坎潘期碳同位素偏移及其意义. 地球化学 36, 279-285. (PDF)
[41] Hu, X.M.*, Jansa, L., Sarti, M., 2006. Mid-Cretaceous oceanic red beds in the Umbria-Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography Palaeoclimatology Palaeoecology 233, 163-186. (PDF)
[40] Hu, X.M., Wang, C.S., Li, X.H., Jansa, L., 2006. Upper Cretaceous oceanic red beds in southern Tibet:Lithofacies, environments and colour origin. China Science Series D Earth Sciences 49, 785-795. (PDF)
[39] Scott, R.W., Wang, C.S., Hu, X.M., 2006. Cretaceous oceanic red beds (CORB), response to paleoclimatic/paleoceanographic global changes and regional tectonics - Workshop of IGCP 463 & 494. Episodes 29, 49-51. (PDF)
[38] Li, X.H., Jenkyns, H.C., Wang, C.S., Hu, X. M., Chen, X., Wei, Y.S., Huang, Y.J., Cui, J., 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society 163, 375-382. (PDF)
[37] Li, X.H., Wang, C.S., Jansa, L., Hu, X.M., 2006. Age of initiation of the India-Asia collision in the east-central Himalaya: A discussion. Journal of Geology 114, 637-640. (PDF)
[36] 胡修棉, 王成善, 李祥辉, 陈蕾, 2006. 藏南古错地区上侏罗统上部和下白垩统沉积相. 古地理学报 8, 175-186. (PDF)
[35] 胡修棉, 王成善, 李祥辉, Jansa, L., 2006. 藏南上白垩统大洋红层:岩石类型、沉积环境与颜色成因. 中国科学:地球科学 36, 811-821. (PDF)
[34] 李祥辉, 王成善, JENKYN, H.C., 崔杰, 胡修棉, 石和, 赵鹏肖, 陈曦, 魏玉帅, 黄永建, 赵兵, 2006. 西藏南部上白垩统高分辨率全岩碳同位素地层学. 地质论评 52, 304-313. (PDF)
[33] Hu, X.M.*, Jansa, L., Wang, C. S., Sarti, M., Bak, K., Wagreich, M., Michalik, J., Sotak, J., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 26, 3-20. (PDF)
[32] Hu, X.M., Lilian, S., Sarti, M., 2005. 西班牙南部Subbetic中带Río Fardes剖面Turonian-Coniacian大洋红层(英文). 地学前缘 12, 38-44. (PDF)
[31] Wang, C.S., Hu, X.M.*, Sarti, M., Scott, R.W., Li, X.H., 2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research 26, 21-32. (PDF)
[31] Li, X.H., Wang, C.S., Hu, X.M., 2005. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research 26, 33-41. (PDF)
[30] Zou, Y.R., Kong, F., Peng, P.A., Hu, X.M., Wang, C.S., 2005. Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: a preliminary study. Cretaceous Research 26, 65-71. (PDF)
[29] 胡修棉, 2005. 白垩纪中期异常地质事件与全球变化. 地学前缘 12, 222-230. (PDF)
[28] 王成善, 胡修棉, 2005. 白垩纪世界与大洋红层. 地学前缘 12, 11-21. (PDF)
[27] 陈曦, 王成善, 李祥辉, 胡修棉, 2005. 阿尔卑斯—喀尔巴阡上白垩统大洋红层特征与对比. 地学前缘 12, 61-68. (PDF)
[26] 李祥辉, 王成善, Jenkyns,H.C., 成鑫荣, 崔杰, 胡修棉, 2005. 西藏特提斯喜马拉雅白垩纪中期Cenomanian Turonian期碳同位素偏移. 地球科学 30, 317-327. (PDF)
[25] IGCP463/494秘书处, 2005. “白垩纪大洋红层——海洋/气候响应”研究进展综述. 地学前缘 12, 69-80. (PDF)
[24] Wang, C.S., Huang, Y.J., Hu, Y.M., Li, X.H., 2004. Cretaceous oceanic redbeds: Implications for paleoclimatology and paleoceanography. Acta Geologica Sinica-English Edition 78, 873-877. (PDF)
[23] Melinte, M.C., Scott, R., Wang, C.S., Hu, X.M., 2004. Cretaceous oceanic red bed deposition, a tool for paleoenvironmental changes—Workshop of IGCP 463 & 494. Episodes 28, 121-123. (PDF)
[22] 胡修棉, 2004. 白垩纪“温室”气候与海洋. 中国地质 31, 442-448. (PDF)
[21] 李祥辉, 胡修棉, 黄永建, 王成善, 陈曦, 魏玉帅, 2004. 白垩纪古海洋气候变化及主要问题. 地球科学进展 19, 83-92. (PDF)
[20] 刘志飞, 胡修棉, 2003. 白垩纪至早第三纪的极端气候事件. 地球科学进展 18, 681-690. (PDF)
[19] 王成善, 李祥辉, 胡修棉, 2003. 再论印度—亚洲大陆碰撞的启动时间. 地质学报 77, 16-24. (PDF)
[18] Hu, X.M., Wang, C.S., Sarti, M., Scott, R.W., 2002. First Workshop of IGCP 463: Upper Cretaceous Oceanic Red Beds. Eiposides 25, 273-274. (PDF)
[17] Wang, C.S., Li, X.H., Hu, X.M., Jansa, L.F., 2002. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova 14, 114-120. (PDF)
[16] 胡修棉, 黄永健, 2002. 与“南永2井珊瑚礁‘红色与黑色沉积夹层’的成因及环境意义初探”商榷. 科学通报 47, 318-319. (PDF)
[15] 李祥辉, 包向农, 胡修棉, 王成善, 万晓樵, 范善发, 2002. P/E界线全球事件在西藏定日地区的响应. 海洋地质与第四纪地质 22, 69-74. (PDF)
[14] Hu, X.M., Wang, C.S., Li, X.H., Fan, S.F., Peng, P.A., 2001. The Cenomanian-Turonian Anoxic Event in Southern Tibet: A Study of Organic Geochemistry. Chinese Journal of Geochemistry 20, 289-295. (PDF)
[13] Wang, C.S., Hu, X.M., Jansa, L., Wan, X.Q., Tao, R., 2001. The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research 22, 481-490. (PDF)
[12] 胡修棉, 王成善, 2001. 古海洋溶解氧研究方法综述. 地球科学进展 16, 65-71. (PDF)
[11] 胡修棉, 王成善, 李祥辉, 2001. 藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件. 自然科学进展 11, 51-58. (PDF)
[10] 胡修棉, 王成善, 李祥辉, 2001. 大洋缺氧事件的碳稳定同位素响应. 成都理工学院学报 28, 1-6. (PDF)
[9] 李祥辉, 王成善, 胡修棉, 2001. 西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义. 地质学报 75, 314-321. (PDF)
[8] 胡修棉, 王成善, 李祥辉, 范善发, 彭平安, 2000. 西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究. 地球化学 29, 417-424. (PDF)
[7] 胡修棉, 吴德超, 2000. 米仓山南缘基底断裂带上两段有限应变和形成条件. 成都理工学院学报 27, 232-236. (PDF)
[6] 李祥辉, 王成善, 胡修棉, 万晓樵, 徐钰林,赵文金, 2000. 朋曲组——西藏南部最高海相层位一个新的地层单元 地层学杂志 24, 243-248. (PDF)
[5] 李祥辉, 王成善, 胡修棉, 2000. 深海相中的砂质碎屑流沉积——以西藏特提斯喜马拉雅侏罗-白垩系为例. 矿物岩石 20, 45-51. (PDF)
[4] 胡修棉, 胡修棉, 1999. 100Ma以来若干重大地质事件与全球气候变化. 大自然探索 18, 53-58.
[3] 王成善, 胡修棉, 李祥辉, 1999. 古海洋溶解氧与缺氧和富氧问题研究. 海洋地质与第四纪地质, 19, 42-50. (PDF)
[2] 王成善, 胡修棉, 万晓樵, 陶然, 1999. 西藏南部中白垩世Cenomanian Tutonian缺氧事件研究. 自然杂志 24, 244-246. (PDF)
[1] 吴德超, 胡修棉,1998. 四川南江上两脆-韧性叠加断裂带构造解析. 成都理工学院学报 25, 48-54. (PDF)