• Publications


[257] Deng,T., Hu, X.M.*, Chew, D., Wang, Q., Yu, J.h., Drakou, F. 2024.Sedimentological evidence for pre-Early Permian continental subduction in the Dabie orogen, central-east China. Tectonics 43, e2023TC007839. doi.org/10.1029/2023TC007839. (PDF)

[256] Deng, T., Ma. A.L.*, Chew. D., Hu, X.M., Wang., P., Jibu, Y.Z., 2024, Revisiting the stratigraphical, sedimentological and provenance evolution of Lingshan Island, offshore of east China: Implications for the destruction of the north China craton. Marine and Petroleum Geology 161, 106701. (PDF)

[255] Dong, X.L., Hu, X.M.*, Lai, W., Xue, W.W., Zhang, S.J., et al.,2024. A global dataset of sandstone detrital composition by Gazzi-Dickinson method. Geoscience Data Journal 11, 128-136. (PDF)

[254] Lai, W.*Hu, X.M., Ma, A.L., 2024, Spatial heterogeneity of Cenozoic provenance in the Nima and Lunpola basins of China: Implications for the origin of the low-relief topography in central Tibet Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 643, 112196. (PDF)

[253] Lai, W., Hu, X.M.*,Dong, X.L., Ma, A.L., 2024. A dataset of sandstone detrital composition from Qinghai-Tibet Plateau. Geoscience Data Journal 11, 86-93.(PDF)

[252] Ma, A.L., Hu, X.M.*, Li, X., Pullen, A., Garzanti E., Suzuki, N., 2024, Timing of rifting of the Dongkaco microcontinent (Central Tibet) and implications for Neo-Tethyan evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 638, 112054. (PDF)

[251] Sun, G.Y.*, Sinclair, H.D., Persano, C., Sruart, F.M., Hu, X.M.*, 2024, Late Cretaceous-Eocene exhumation of the northern Lhasa terrane and topographic implications for the Central Tibet. LITHOS 470-471, 107528. (PDF)

[250] Zhang, S.J., Najman, Y., Hu, X.M.*, Carter, A., Mark, C., Xue, W.W., 2024, Constraining the exhumation history of the northwestern margin of Tibet with a comparison to the adjacent Pamir. Journal of the Geological Society, doi.org/10.1144/jgs2023-198.(PDF)

[249] Zhang, S.J.*, Hu, X.M., Zhang, J.R., Li, Q., Xu, Y.W., Yu, Y.Y., Han, L.Q., 2024. A database of detrital zircon U–Pb ages and Hf isotopic compositions from the Tarim, West Kunlun, Pamir, Tajik and Tianshuihai terranes. Geoscience Data Journal 11, 118-127. (PDF)

[248] 王家昊, 胡修棉*, 蒋璟鑫, 马超, 马鹏飞. 2024. 重建南海27Ma以来高分辨率碳酸盐补偿深度. 地学前缘.31(1): 500-510.(PDF)


[247] Hu, X.M.*, Xu, Y.W., Ma, X.G., Zhu, Y.Q., Ma, C., Li, C., Lü, H.R., Wang, X.B, Zhou, C.H., Wang, C.S., 2023. Knowledge System, Ontology, and Knowledge Graph of the Deep-Time Digital Earth (DDE): Progress and Perspective. Journal of Earth Science, 34(5): 1323–1327. (PDF)

[246] Hu, X.M.*, Ma, X.G., Ma, C., Lv, H.R., 2023. The geoscience knowledge system, ontology and knowledge graph fordata-driven discovery: Preface. Geoscience Frontiers 14, 101592. (PDF)

[245] Dong, X.L., Hu, X.M.*, Garzanti, E., Liang, W.D., Li, G.W., Lai, W., Wang, C.S., Han, Z., Deng, T., Li, Z.C., 2023. The extraordinary Namche Barwa sediment factory in the Eastern Himalayan Syntaxis. Basin Research, 35(6): 2193-2216. (PDF)

[244] Han, Z., Hu, X.M.*, Newton, R.J., He, T.C., Mills, B.J.W., Jenkyns, H.C., Ruhl,M., Jamieson, R.A., 2023. Spatially heterogenous seawater δ34S and global cessation of Ca-sulfate burial during the Toarcian oceanic anoxic event. Earth and Planetary Science Letters 622, 118404. (PDF)

[243] Jiang, J.X., Hu, X.M.*, Li, J., Garzanti, E., Jiang, S.J., Cui, Y., 2023. Eustatic change across the Paleocene-Eocene Thermal Maximum in the epicontinental Tarim seaway. Global and Planetary Change 229, 104241. (PDF)

[242] Lai, W., Liang, W.D., Hu, X.M.*, Garzanti, E., Lu, H.Y., Dong, X.L., Grain-size and compositional variability of Yarlung Tsangpo sand (Xigaze transect, south Tibet): Implications for sediment mixing by fluvial and aeolian processes. Journal of Palaeogeography 12(2), 195-210. (PDF)

[241] Liang, W.D., Hu, X.M.*, Garzanti, E., Wen, H.G., Hou, M.C., 2023, Petrographic composition and heavy minerals in modern river sand: A global database. Geoscience Data Journal, DOI: 10.1002/gdj3.219. (PDF)

[240] Liang, W.D., Hu,X.M.*, Garzanti,E., Dong,X.l., Zhang,Y.Q., 2023, Fluvial-aeolian interaction and compositional variability in the river-fed Yarlung Tsangpo dune system (southern Tibet). Journal of Geophysical Research: Earth Surface 128, e2022JF006920. doi. org/10.1029/2022JF006920.(PDF)

[239] Li, X., Hu, X.M.*, An, W., Liu, Q., Garzanti, E., Meng, J., 2023. From Neo-Tethyan convergence to India-Asia collision: radiolarian biostratigraphy of the Cretaceous to Paleocene deep-water Tethys Himalaya. Newsletters on Stratigaphy, 56 (1): 33-52.(PDF)

[238] Ma, A.L., Hu, X.M.*, Garzanti, E., Boudagher-Fadel, M., Xue, W.W., Han, Z., Wang, P., 2023, Paleogeographic and tectonic evolution of Mesozoic Qiangtang basins (Tibet). Tectonophysics 862, 229957. (PDF)

[237] Ma, A.L., Hu, X.M*, Garzanti, E., Pullen, A., BouDagher-Fadel, M., Ji, X.K., Wang, J.G., Lai, W., Xue., W.W., 2023. Mid-Cretaceous exhumation of the Central Qiangtang Mountain Range metamorphic rocks as evidenced by the Abushan continental redbeds, Tectonics 42, e2022TC007520. doi.org/10.1029/2022TC007520. (PDF)

[236] Pang, Y.D., Hu, X.M.*, 2023, A database of detrital zircon U–Pb geochronology and Hf isotopes from the Songpan–Ganzi and Western Qinling terranes. Geoscience Data Journal, doi.10.1002/gdj3.195. (PDF)

[235] Sun, G. Y., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., Xu, Y.W., Jiang, J.X., Wolfgring, E., Wang, Y.S., Jiang, S.J., 2023, Pre-Eocene Arabia-Eurasia collision: New constraints from the Zagros Mountains (Amiran Basin, Iran). Geology 51, 941-946, https://doi.org/10.1130/G51321.1. (PDF)

[234] Wen, D.J., Hu, X.M.*Yu, J.H., Wang, X.L., Chapman, T., and Wang, R.Q., In Press. Origin of Late Cretaceous, enclave-bearing granitoids in southern Tibet: Implications for magma recharge and crustal thickening. GSA Bulletin, doi.org/10.1130/B36530.1. (PDF)

[233] Wen, D.J., Hu, X.M.*, Chapman, T., Zeng, G., Ma, A.L., Wang, R.Q., 2023. Late Cretaceous bimodal volcanic rocks in Shuanghu induced by lithospheric delamination beneath the Southern Qiangtang, Tibet. LITHOS 460–461, 107368. (PDF)

[232] Xue, W.W., Hu, X.M.*, Ma, A.L., Garzanti, E., Liang, W.D., Hao, L.L., Wang, Q. 2023. Oligocene orogen-parallel extension in southern Tibet during Indian continental subduction. Geophysical Research Letters, 50, e2023GL105193. https://doi.org/10.1029/2023GL105193(PDF)

[231] Xue, W.W., Hu, X.M.*, Garzanti, E., Ma, A.L., Lai,W., Li, C., 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age and Hf isotope facies. Earth-Science Reviews 236, 104271. (PDF)

[230] Xu, Y.W.Hu, X.M.*, Han. Z., 2023. Carbonate Ontology and Its Application for Integrating Microfacies Data. Journal of Earth Science, 34(5): 1328–1338. (PDF)

[229] Xu, Y.W., Hu, X.M.*, Garzanti, E., Sun, G.Y., Jiang, J.X., Li, J., Zhang, S.J., Schlagintweit, F., Rao, X., 2023, Carbonate factories and their critical control on the geometry of carbonate platforms (mid-Cretaceous, southern Iran). Palaeogeography, Palaeoclimatology 625, 111680. (PDF)

[228] Xu, Y.W., Hu, X.M.*, Garzanti, E., Sun, G.Y., Jiang, J.X., Schlagintweit, F., 2023, Driver of eustatic change during the early Aptian Oceanic Anoxic Event 1a (~120 Ma). Global and Planetary Change 229, 104236. (PDF)

[227] Zhang, S.J., Hu, X.M.*, Zhang, J.R., Li, Q., Xu, Y.W., Yu, Y.Y., Han, L.Q., 2023, A database of detrital zircon U–Pb ages and Hf isotopic compositions from the Tarim, West Kunlun, Pamir, Tajik and Tianshuihai terranes. Geoscience Data Journal, DOI: 10.1002/gdj3.213.(PDF)

[226] 刘昕羽, 胡修棉*, 许艺炜, 蒋璟鑫, 孙高远. 2023. 伊朗Lurestan-Fars地区晚白垩世微相与沉积环境演化. 沉积学报 41(4): 1124-1137. (PDF)

[225] 张艺秋, 胡修棉*, 董小龙, 赖文. 2023, 定量表征河流砂颗粒的形状. 地质评论 69(6): 2203-2215. (PDF)

[224] 梁文栋, 胡修棉*. 2023, 现代河流沉积物碎屑及矿物组分研究新进展. 地质学报 97(09): 2975-2991. (PDF)

[223] 潘应娣, 胡修棉*, 马安林, 梁文栋. 2023, 班公湖—怒江缝合带同碰撞海沟盆地砂岩物源分析及其大地构造意义.地质学报 97(09): 2992-3005 (PDF)

[222] 翁晓爱, 姜守一, 韩中, 胡修棉, 晏雄. 2023. 藏南 Kioto 碳酸盐台地对早侏罗世普林斯巴晚期碳循环扰动的沉积和生物响应. 沉积学报. doi.org/10.14027/j.issn.1000-0550.2023.078. (PDF)

[221] 陈臻, 王丽娟, 李娟, 何佳伟, 杨用彪, 邓涛, 关俊朋, 龚海艇, 胡修棉. 2023. 下扬子早古生代碳酸盐岩微相与沉积环境演化. 沉积学报doi.org/10.14027/j.issn.1000-0550.2023.026. (PDF)


[220] Hu, X.M., Ma, A.L, Xue, W.W., Garzanti, E., Cao, Y., Li, S.M., Sun, G.Y., Lai, W., 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, DOI:10.1016/j.earscirev.2022.104031. (PDF)

[219] GholamiZadeh, P., Hu, X.M., Garzanti, E., Hossein Adabi, M., 2022. Constraining the timing of Arabia-Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran). GSA Bulletin 134, 1793-1810. (PDF)

[218] Jiang, J.X., Hu, X.M.*, Garzanti, E., Marcelle K, B.F., Sun, G,Y., Xu, Y.W., 2022, Enhanced storm-induced turbiditic events during early Paleogene hyperthermals (Arabian continental margin, SW Iran). Global and Planetary Change 214, 103832. (PDF)

[217] Han, Z., Hu, X.M.*, Hu, Z.Y., Jenkyns, H.C., Su., T.H., 2022. Geochemical evidence from the Kioto Carbonate Platform (Tibet) reveals enhanced terrigenous input and deoxygenation during the early Toarcian. Global and Planetary Change 215, 103887. (PDF)

[216] Han, Z., Hu, X.M.*, He, T.C., Newton, R.J., Jenkyns, H.C., Jamieson, R.A., Franceschi, M., 2022. Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya.  Earth and Planetary Science Letters. 578, 117261, DOI: 10.1016/j.epsl.2021.117261. (PDF)

[215] Lai, W., Hu, X.M.*, Ma, A.L., Garzanti, E., Xu, Y.W., 2022. From the southern Gangdese Yeba arc to the Bangong-Nujiang Ocean: Provenance of the Upper Jurassic-Lower Cretaceous Lagongtang Formation (northern Lhasa, Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology 588, 110837. (PDF)

[214] Liang, W.D., Garzanti, E., Hu, X.M.*, Resentini, A., Vezzoli, G., Yao, W.S., 2022, Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block. Basin Research 34, 411–439. https://doi.org/10.1111/bre.12625. (PDF)

[213] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., 2022. Spatial heterogeneity in carbonate-platform environments and carbon isotope values across the Paleocene–Eocene thermal maximum (Tethys Himalaya, South Tibet). Global and Planetary Change 214, 103853. (PDF)

[212] Xue, W.W., Najman, Y., Hu, X.M.*, Garzanti, E., Stuart, F.M., Li, W., M, A.L., Wang, Y., 2022. Late Cretaceous to Late Eocene exhumation in the Nima area, central Tibet: Implications for development of low relief topography of the Tibetan Plateau. Tectonics 41, e2021TC006989. doi.org/10.1029/2021TC0069890. (PDF)

[211] Xu, Y.W., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., Sun, G.Y., Lai, W., 2022. Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? GSA Bulletin 134, 289-404. doi/10.1130/B35930.1.  (PDF)

[210] Wang, Y.S., Jiang,S.J., Hu, X.M., Li,J, c , Kulhanek, D.K., Pospichal, J.J., Watkins, D.K., 2022. Lower Cretaceous calcareous nannofossils and their biostratigraphic and paleoceanographic implications in Southern Tibet. Marine Micropaleontology 175,102159. (PDF)

[209] Chen, L., Zheng, Y.F., Zhao, Z.F., An, W., Hu, X.M., 2022. Continental crust recycling in ancient oceanic subduction zone: Geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414-415, 106619. (PDF) 

[208] Hu, X.B., Hu, Z.C., Jiang, J.L., Xue.W.W., Hu, X.M., Xu. X.L., 2022. Character embedding‑based Bi‑LSTM for Zircon similarity calculation with clustering. Earth Science Informatics 15, 1417-1425. (PDF)

[207] Wang, Y.S., Cui, Y., Su H., Jiang, J.X., Wang,Y., Yang, Z.L., Hu, X.M., Jiang, S.J.,2022. Response of calcareous nannoplankton to the Paleocene–Eocene ThermalMaximum in the Paratethys Seaway (Tarim Basin, West China). Global and Planetary Change 217, 103918. (PDF)

[206] 胡修棉. 2022. 中国水系固体物质研究进展. 沉积学报 40, 4. (PDF)

[205] 董小龙, 胡修棉*, 郭荣华, 赖文. 2022. 河流砂碎屑统计方法的对比实验研究. 沉积学报 40(4): 871-882. (PDF)

[204] 李超, 胡修棉*. 2022. 宁芜盆地中三叠统黄马青组是大别造山带最早剥露的记录. 高校地质学报 28(4): 527-538. (PDF)

[203] 张艺秋, 胡修棉*. 2022. 河流砾—砂过渡(GST)研究进展. 沉积学报 40(4): 883-893. (PDF)

[202] 王学天, 邵龙义, Eriksson, K.A., 胡修棉, 刘钦甫, 鲁静. 2022. 基于定量古地理的BQART 模型深时古地势重建方法——以晚二叠世峨眉山大火成岩省内带为例. 沉积学报 40(60): 1461-1480. (PDF)

[201] 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题. 地质学报 96(1): 66-94. (PDF)

[200] 董云鹏, 任建国, 张志飞, 邓军, 郭安林, 张兴亮, 胡修, 王强, 李建威, 邱楠生, 孙有斌, 赵国春, 张进江, 彭建兵, 林杨挺, 初航, 吕大炜. 2022. 地质学科未来5~10年发展战略: 趋势与对策. 科学通报 67(23): 2708-2718. (PDF)


[199] Akdoğan, R., Hu, X.M.*, Okay, A.I., Topuz, G., Xue, W.W., 2021, Provenance of the Paleozoic to Mesozoic Siliciclastic Rocks of the Istanbul Zone Constrains the Timing of the Rheic Ocean Closure in the Eastern Mediterranean Region. Tectonics, 10.1029/2021TC006824. (PDF)

[198] An, W., Hu, X.M.*, Garzanti, E., Wang, J.G., Liu, Q., 2021. New Precise Dating of the India-Asia Collision in theTibetan Himalaya at 61 Ma. Geophysical Research Letters, 10.1029/2020GL090641. ( PDF)

[197] Guo, R.H., Hu, X.M.*,Garzanti, E., Lai, W., 2021. Boron isotope composition of detrital tourmaline: A new tool in provenance analysis
, Lithos 400-401, 106360.  ( PDF)

[196] Han, Z., Hu, X.M.*, BouDagherFadel, M., Jenkyns, H.C., Franceschi, M., 2021. Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere
, Newsletters on Stratigraphy 54, 461-481. ( PDF)

[195] Jiang, J.X., Hu, X.M.*, Li, J., BouDagher-Fadel, M., Garzanti, E., 2021. Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux. Palaeogeography, Palaeoclimatology, Palaeoecology 562, 110095. (PDF)

[194] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M., 2021. SClimate-driven hydrological change and carbonate platform demise induced by the Paleocene–Eocene Thermal Maximum (southern Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology 567, 110250. ( PDF)

[193] Wen, D.J. ,Hu, X.M.*, Qu, J.S., Yu, J.H., Wang, R.Q., He, Z.Y., Li, Y.F., 2021. Petrogenesis of early Eocene granites and associated mafific enclaves in the Gangdese batholith, Tibet: Implications for net crustal growth in collision zones. Lithos 394-395, 106170.(PDF)

[192] Tang, Y.L., Shi, Y., Hu, X.M., Liu, X.J., Huang, C.W., 2021. Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai Orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block. Journal of Asian Earth Sciences 220,104906. ( PDF)

[191] Liu, Q., Kneller, B., An, W., Hu, X.M.*, 2021. Sedimentological responses to initial continental collision:triggering of sand injection and onset of mass movement in a syn-collisional trench basin,Saga,southern Tibet, Journal of the Geological Societyhttps://doi.org/10.1144/jgs2020-178.(PDF)

[190] Yuan, J., Yang, Z.Y., Dong, C.L., Ktijgsman,W., Hu, X.M.,Li, S.H., et al., 2021. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asiacollision. National Science Review 8, nwaa173. (PDF)

[189] Zhou, C.H., Wang, H., Wang, C.S., Hou, Z.Q., Zheng, Z.M., Shen, S.Z., Cheng, Q.M., Feng, Z.Q., Wang, X.B., Lv, H.R., Fan, J.X., Hu, X.M., Hou, M.C., Zhu, Y.Q., 2021. Geoscience knowledge graph in the big data era. Science China Earth Sciences 64, 1105–1114. ( PDF)

[188] Giovanni, C., Luca, M., Garzanti, E., Sirio, C., Giulia, B., Giovanni, V., Hu, X.M., Daniela, B., 2021. keletal assemblages and terrigenous input in the Eocene carbonate systems of the Nummulitic Limestone (NW Europe), Sedimentary Geology 425, 106005.  ( PDF)

[187] Wang, C.S., Hazen, R. M., Cheng, Q.M., Stephenson, M.H., Zhou, C., Fox, P., Shen, S.Z., Oberhansli, R., Hou, Z.Q., Ma, X.G., Feng, Z.Q., Fan, J.X., Ma, C., Hu, X.M., Luo, B., Wang, J.L., Schiffries, C.M., 2021. The Deep-Time Digital Earth program: data-driven discovery in geosciences, National Science Review 8(9), nwab027. (PDF)

[186] 胡修棉*, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报 95(1):139-158.(PDF)

[185] 傅焓埔, 胡修棉*, 梁文栋, Garzanti. E., 2020. 西藏南部侏罗纪—古近纪砂岩重矿物分析:探讨岩浆弧与大陆地块物源差异性. 高校地质学报 26, 530-539. (PDF)

[184] 李伟, 胡修棉*, Melinte-Dobrinescu M., BouDagher-Fadel M., 2021. 塔里木海齐姆根剖面早古近纪极热事件及其环境效应. 科学通报 66,1067-1082.(PDF)

[183] 马安林, 胡修棉*, 2021. 沉积记录约束班公湖—怒江缝合带东巧蛇绿岩的仰冲过程. 沉积与特提斯地质 41(2):163-175. ( PDF)

[182] 张世杰, 胡修棉*, 郜周全, 赵永强, 马安林, 许艺炜, 2021. 西昆仑山古近纪隆升形:时间、证据和争论. 地质评论 67(4): 1057-1076.    ( PDF)

[181] 郝慧珍, 顾庆, 胡修棉*, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学 46 (9): 3091-3106.(PDF)

[180] 何国建,胡修棉,楼法生,陈浩鹏,杨晓飞,陈建中,吴春伟,张密椋.2021. 喀喇昆仑北羌塘地体加勒万河地区中-基性岩地球化学与年代学研究.中国地质.

https://kns.cnki.net/kcms/detail/11.1167.P.20210301.1826.017.html. (PDF)

[179] 马鹏飞, 刘志飞, 拓守廷, 蒋璟鑫, 许艺炜, 胡修棉. 2023. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义. 地球科学进展 36(6): 43-662. (PDF)

[178] 周成虎, 王华, 王成善, 侯增谦, 郑志明, 沈树忠, 成秋明, 冯志强, 王新兵, 闾海荣, 樊隽轩, 胡修棉, 侯明才, 诸云强. 2021. 大数据时代的地学知识图谱研究展望中国科学地球科学 51, doi: 10.1360/SSTe-2020-0337. ( PDF)


[177] 胡修棉, 赖文, 许艺炜, 等. 沉积岩显微数字图像数据的获取与信息收集标准. 中国科学数据, 2020, 5(3).  DOI: 10.11922/csdata.2020.0008.zh. (PDF)

[176] 赖文, 蒋璟鑫, 邱检生, 等. 南京大学岩石教学薄片显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0071.zh(PDF)

[175] 董小龙, 胡修棉, 赖文. 雅鲁藏布江砂粒显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0051.zh. ( PDF)

[174] 李娟, 胡修棉. 藏南特提斯喜马拉雅带晚白垩世–早古近纪碳酸盐岩显微图像数据集. 中国科学数据, 2020, 5(3).  DOI: 10.11922/csdata.2020.0072.zh. PDF)

[173] 张世杰, 胡修棉. 新疆塔里木盆地西部晚白垩世–始新世岩石薄片偏光显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0010.zh. PDF)

[172] 许艺炜, 胡修棉, 孙高远. 北拉萨地体白垩纪郎山组岩石薄片显微图像数据集. 中国科学数据, 2020, 5(3).  DOI: 10.11922/csdata.2020.0049.zh.PDF)

[171] 张艺秋, 安慰,胡修棉. 藏南日喀则弧前盆地白垩纪陆源碎屑岩显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0064.zh. ( PDF)

[170] 赖文, 张艺秋, 胡修棉, 等. 拉萨地体中–北部白垩纪陆源碎屑岩显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0009.zh. PDF)

[169] 韩中, 胡修棉. 西藏特提斯喜马拉雅早–中侏罗世岩石薄片偏光显微图像数据集. 中国科学数据, 2020, 5(3). DOI: 10.11922/csdata.2020.0048.zh. ( PDF)


[168] Hu, X.M.*, An, W., Garzanti, E., Liu, Q., 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China Earth Sciences 63, 2017-2028.(PDF).

[167] Hu, X.M.*,  Li, J., Han, Z., Li, Y.X., 2020. Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms. Science China Earth Sciences 63, 1041–1058. (PDF)

[166] Guo, R.H., Hu, X.M.*, Garzanti, E., Lai, W., Yan, B., Mark, C., 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon,titanite, rutile and monazite record magmatic andmetamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews 201, 103082. (PDF)

[165] Li, C., Hu, X.M.*, Wang, J.G., Vermeesch, P., Garzanti, E., 2020. Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continentalarc in South China. Tectonophysics 780, 22840. https://doi.org/10.1016/j.tecto.2020.228400. (PDF)

[164] Li, J., Hu, X.M.*, Garzanti, E., Banerjee, S., BouDagher-Fadel, M., 2020. Late Cretaceous topographic doming caused by initial upwelling of Deccan magmas: Stratigraphic and sedimentological evidence. GSA Bulletin, 132 (3-4): 835–849.(PDF)

[163] Li, J., Hu, X.M.*, Zachos, J.C., Garzanti, E., BouDagher-Fadel, M., 2020. Sea level,biotic and carbon-isotope response to the Paleocene–Eocene thermal maximum in Tibetan Himalayan platform carbonates. Global and Planetary Change, 103316. (PDF)

[162] Ma, A.L., Hu, X.M., Kapp, P., BouDagher-Fadel, M., Lai, W., 2020. Pre‐Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet. Geophysical Research Letters. 10.1029/2019GL08665. (PDF)

[161] Ma, A.L., Hu, X.M.*, Kapp, P., Lai, W., Han, Z., Xue, W.W., 2020. Mesozoic Subduction Accretion History in Central Tibet Constrained From Provenance Analysis of the Mugagangri Subduction Complex in the Bangong‐Nujiang Suture Zone. Tectonics, 1-22.(PDF)

[160] Xue, W.W., Hu, X.M., Ma, A.L., Gareznti, E., Li, J., 2020. Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system .Marine and Petroleum Geology, 104558.(PDF)

[159] Xu, Y.W., Hu, X.M.*, BouDagher-Fadel, M., Su, G.Y., Lai, W., Li, J., Zhang, S.J., 2020. The major late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet. Geological Society, London, Special Publication 498, 211-232.(PDF)

[158] Zhou, X.H., Hu, X.M., Jiang, R., Gao, T.S., Ma, X., Xing, G.F., Sun, G.Y., Shu, X.J., Zhao, X.L., 2020. Sedimentary Facies, Provenance and Geochronology of the Heshangzhen Group: Implications for the Tectonic Evolution of the Eastern Jiangnan Orogen, South China. Acta Geologica Sinica 94, 1138-1158.(PDF)

[157] 胡修棉*, 安慰, Garzanti E, 刘群. 2020. 碰撞造山带海沟盆地的识别——以雅鲁藏布缝合带为例. 中国科学: 地球科学 50, 1893-1905. (PDF)

[156] 胡修棉*, 李娟, 韩中, 李永祥. 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学: 地球科学 50(8), 1023-1043.(PDF)

[155] 刘昕羽, 胡修棉*, 李娟. 2020. 白垩纪大洋缺氧事件与富氧事件. 自然杂志 42(4), 347-354.(PDF)

[154] 许艺炜, 胡修棉*. 2020. 深时全球海平面变化重建方法的回顾与展望. 高校地质学报 26(4), 395-410.(PDF)

[153] 傅焓埔, 刘群, 胡修棉*. 2020. 水下沉积物重力流与海底扇相模式研究进展.地球科学进展 35(2), 124-136.(PDF)

[152] 蒋璟鑫, 李超, 胡修棉*. 2020. 沉积学数据库建设与沉积大数据科学研究进展:以Macrostrat数据库为例. 高校地质学报 26, 27-43. (PDF)

[151] 薛伟伟, 马安林, 胡修棉*. 2020. 羌塘盆地侏罗系—白垩系岩石地层格架厘定. 地质论评 66(5), 1114-1129.(PDF)


[150] Chen, Z.Q., Hu, X.M.*, Montañez, I.P., Ogg, J.G., 2019. Sedimentology as a key to undersyanding earth and life processes. Earth-Science Reviews 189,1-5. (PDF)

[149] Lai, W.,Hu, X.M., Garzanti, E., Sun, G., Garzione, C.N., BouDagher-Fadel, M., Ma, A.L., 2019. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 131, 1823-1836. (PDF)

[148] Lai, W., Hu, X.M.*, Garzanti, E., Xu, Y.W., Ma, A.L., Li, W., 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research 73, 136-152. (PDF)

[147] Sun, G.Y., Hu, X.M., Xu,Y.W., BouDagher-Fadel, M.K., 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics 750, 344-358. (PDF)

[146] Zhang, S.J., Hu, X.M.*, Garzanti, E., 2019. Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin. Tectonophysics 772,1-16. (PDF)

[145] Hao, H.Z., Guo, R.H., Gu., Q., Hu, X.M., 2019. Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Minerals Engineering 147, https://doi.org/10.1016/j.mineng.2019.105899. (PDF)

[144] Li, N., Hao, H.Z., Jiang, Z.W., Jiang, F., Guo, R.H., G, Q., Hu, X.M., 2019. A multi-task multi-class learning method for automatic identification of heavy minerals from river sand. Computers & Geosciences 135, 104403. (PDF)

[143] 叶加鹏, 胡修棉*, 孙高远, BouDagher-Fadel, K.M., 2019. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma). 科学通报 64,1620-1636. (PDF)


[142] An, W., Hu, X.M.*, Garzanti, E., 2018. Discovery of Upper Cretaceous Neo-Tethyan trench deposits in south Tibet (Luogangcu Formation). Lithosphere 10, 446-459. (PDF)

[141] Fu, H.P., Hu, X.M.*, Crouch, E.M., An, W., Wang, J.G., Garzanti, E., 2018. Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Science China Earth Sciences 61, 1204-1220. (PDF)

[140] Han, Z., Hu, X.M.*, Kemp, D.B., Li, J., 2018. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise. Earth and Planetary Science Letters 489, 59-71. (PDF)

[139] Zhang, S.J., Hu, X.M.*, Han, Z., Li, J., Garzanti, E., 2018. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea. Palaeogeography Palaeoclimatology Palaeoecology 50192-110. (PDF)

[138] Ma, A.L., Hu, X.M., Kapp. P., Han. Z., Lai. W., BouDagher-Fadel, M., 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet.   Palaeogeography Palaeoclimatology Palaeoecology 506, 30-47. (PDF)

[137] Ma, A.L., Hu, X.M.*, 2018. Reply to Comment by W.-Y.Chen et al. on “Sedimentary and Tectonic Evolution of the Southem Qiangtang Basin:Implication for the Lhasa-Qiangtang Collision Timing”. Journal of Geophysical Research: Solid Earth 123, 7343-7346. (PDF)

[136] Jiang, F., Gu, Q., Hao, H.Z., Li, N.,Wang, B.Q., Hu, X.M., 2018. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone. Computers and Geosciences 115, 143-153. (PDF)

[135] 胡修棉, 2018. 板块构造理论的先行者——William R.Dickinson教授成就解读. 中国科学: 地球科学, 48, 1267-1274. (PDF)

[134] 傅焓埔, 胡修棉*, Crouch, E.M., 安慰 王建刚, Garzanti, E., 2018. 西藏雅鲁藏布缝合带甲查拉组: 晚白垩世新特提斯洋海沟沉积? 中国科学: 地球科学 48, 1275-1292. (PDF)

[133] 周博, 胡修棉*, 安慰, 马安林, 赖文, 2018. 印度-亚洲大陆碰撞初期的海沟沉积: 藏东南宗卓组沉积岩石学与物源分析. 地质学报 92, 1-14. (PDF)

[132] 孙高远, 王建刚, 胡修棉, BOUDAGHER-FADAL, M.K., 2018. 西藏札达地区上白垩统-下始新统达机翁组:对冈底斯弧前盆地演化的制约. 岩石学报 34, 1847-1861. (PDF)


[131] Hu, X.M.*, Wang, J.G., An, W., Garzanti, E., Li, J., 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China-Earth Sciences 60, 603-625. (PDF)

[130] Hu, X.M., Wagreich, M., Sames, B., 2017. Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes. Science China-Earth Sciences 60, 1-4. (PDF)

[129] An, W., Hu, X.M.*, Garzanti, E., 2017. Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India-Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Research 41,222-234. (PDF)

[128] BouDagher-Fadel, M.K., Hu, X.M., Price, G.D., Sun, G.Y., Wang,J.G., An, W., 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-cretaceous limestones in the southern Tibetan Plateau. Journal of Foraminiferal Research 47(2), 188-207. (PDF)

[127] Li, J., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., 2017. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Palaeogeography Palaeoclimatology Palaeoecology 466, 153-165. (PDF)

[126] Lai, W., Hu, X.M.*, Zhu, D.C., An, W., Ma, A.L., 2017. Discovery of the Early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean? International Journal of Earth Sciences 106, 1277-1288. (PDF)

[125] Ma, A.L., Hu, X.M., Garzanti, E., Han, Z., Lai, W., 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research-Solid Earth 122, 4790-4813. (PDF)

[124] Sun, G.Y., Hu, X.M.*, Sinclair, H.D.,  2017. Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 101-118. (PDF)

[123] Wang, J.G., Hu, X., Garzanti, E., An, W., Liu, X.C., 2017a. The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sc Lett 465, 38-47(PDF)

[122] Wang, J.G., Hu, X.M., Garzanti, E., Ji, W.Q., Liu, Z.C., Liu, X.C., Wu, F.Y., 2017. Early Cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research-Solid Earth 122, 5748-5765. (PDF)

[121] Li, N., Hao, H.Z., Gu, Q., Wang, D.R., Hu, X.M., 2017. A transfer learning method for automatic identification of sandstone microscopic images. Computers & Geosciences 103, 111-121. (PDF)

[120] Huang, W.T., Lippert, P.C., Zhang, Y., Jackson, M.J., Dekkers, M.J., Li, J., Hu, X.M., Zhang, B., Guo, Z.J., van Hinsbergen, D.J.J., 2017. Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research-Solid Earth 122, 2434-2456. (PDF)

[119] Huang, W.T., Lippert, P.C., Jackson, M.J., Dekkers, M.J., Zhang, Y., Li, J., Guo, Z.J., Kapp, P., van Hinsbergen, D. J. J., 2017. Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision. Journal of Geophysical Research-Solid Earth 122, 808-825. (PDF)

[118] 胡修棉, 李娟, 安慰, 王建刚, 2017. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分. 地学前缘, 24, 174-194. (PDF)

[117] 胡修棉, 2017. 物源分析的一个误区:沙粒在河流搬运过程中的变化. 古地理学报, 19, 175-183. (PDF)

[116] 胡修棉*, 王建刚, 安慰, Garzanti, E., 李娟, 2017. 利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程. 中国科学: 地球科学 47, 261-283. (PDF)

[115] 孙高远, 胡修棉*, 2017. 拉萨地体中部上白垩统达雄组的建立及构造隆升意义. 地质学报 91. 2623-2637.   (PDF)

[114] 李超, 吕璇, 胡修棉*, 于津海, 孙高远, 2017. 下扬子砂岩物源分析提供东南沿海晚古生代大陆弧新证据. 科学通报 62, 2951-2966. (PDF)

[113] 许艺炜, 黄燕, 胡修棉, 杨江海, 2017. 显生宙深时气候研究热点问题的文献计量分析. 沉积学报 35, 994-1003. (PDF)

[112] 张波兴, 李永祥, 胡修棉, 2017. 藏南床得剖面古地磁结果对印度-亚洲碰撞方式的约束. 科学通报 62, 298-314. (PDF)


[111] Hu, X.M.*, Garzanti, E., Wang, J. G., Huang, W. T., An, W., Webb, A., 2016. The timing of India-Asia collision onset - Facts, theories, controversies. Earth-Science Reviews 160, 264-299. (PDF)

[110] Hu, X.M.*, Wang, J.G., BouDagher-Fadel, M., Garzanti, E., An, W., 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research 32, 76-92. (PDF)

[109] Han, Z., Hu, X.M.*, Li, J., Garzanti, E., 2016. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeography Palaeoclimatology Palaeoecology 456, 1-20. (PDF)

[108] Li, J., Hu, X.M.*, Zhao, K.D., Cai, Y.F., Sun, T., 2016. Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy). Cretaceous Research 66, 115-128. (PDF)

[107] Wang, J.G., Wang, J.G., Wu, F.Y., Garzanti, E., Hu, X.M., Ji, W.Q., Liu, Z.C., Liu, X.C., 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research 34, 84-98. (PDF)

[106] Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M.C., Hu, X.M., Wendler, I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O., 2016. Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 393-411. (PDF)


[105] Hu, X.M.*, Garzanti, E., An, W., 2015. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology. Journal of Palaeogeography-English Edition 4, 85-98. (PDF)

[104] Hu, X.M.*, Garzanti, E., Moore, T., Raffi, I., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859-862. (PDF)

[103] Garzanti, E., Hu, X.M.*, 2015. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Research 28, 165-178.(PDF)

[102] Li, J., Hu, X.M.*, Garzanti, E., An, W., Wang, J.G., 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental collision. Journal of Asian Earth Sciences 104, 39-54. (PDF)

[101] Huang, W.T. et al., 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry Geophysics Geosystems 16, 77-100. (PDF)

[100] Sun, G.Y., Hu, X.M.*, Sinclair, H.D., BouDagher-Fadel, M.K., Wang, J.G., 2015. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. GSA Bulletin 127, 1001-1021. (PDF)

[99] Sun, G.Y., Hu, X.M.*, Zhu, D.C., Hong, W.T., Wang, J.G., Wang, Q., 2015. Thickened juvenile lower crust-derived ~90 Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithosphere 224, 225-240. (PDF)

[98] Wang, J.G., Hu, X.M.*, BouDagher-Fadel, M.K., Wu, F.Y., Sun, G.Y., 2015. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India-Asia collision. Sedimentary Geology, 315, 1-13. (PDF)

[97] BouDagher-Fadel, M.K., Price, G.D., Hu, X.M., Li, J., 2015. Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme. Stratigraphy 12, 67-91. (PDF)

[96] 胡修棉*, 2015. 东特提斯洋晚中生代—古近纪重大事件研究进展. 自然杂志 37, 93-102(PDF)

[95] 李世毅, 姜迪, 赵莹莹, 胡修棉*, 史宇坤, 2015. 安徽巢湖地区石炭纪-早二叠世碳酸盐岩微相与沉积环境. 沉积与特提斯地质 35, 3-15. (PDF)


[94] Hu, X.M.*, An, W., Wang, J.G., Garzanti, E., Guo, R.H., 2014. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics 621, 60-68. (PDF)

[93] An, W., Hu, X.M.*, Garzanti, E., BouDagher-Fadel, M.K., Wang, J.G., Sun, G.Y., 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin 12, 1595-1613. (PDF)

[92] He, L.F., Hu, X.M., Zha, Y.B., Xu, L.G., Wang, Y.H., 2014. Distribution and origin of high magnetic anomalies at Luobusa ophiolite in southern Tibet. Chinese Science Bulletin 59, 2898-2908. (PDF)

[91] Wang, J.G., Wu, F.Y., Tan, X.C., Liu, C.Z., 2014. Magmatic evolution of the western Myanmar arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612, 97-105. (PDF)

[90] 何兰芳, 胡修棉, 查亚兵, 徐礼贵, 王耀辉, 2014. 藏南罗布莎蛇绿岩高磁异常分布特征与成因. 科学通报 59, 960-969. (PDF)


[90] Wang, J.G., Hu, X.M.*, Garzanti, E., Wu, F.Y., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze area, southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo initiation. Journal of Geology 121, 425-444. (PDF)

[89] Yu, J.H., Liu, Q., Hu. X.M., Wang, Q., Y, O.R.S., 2013. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny? . Chinese Science Bulletin 58, 788-795. (PDF)

[88] 胡修棉, 2013. 显生宙海相红层的分布、类型与成因机制. 矿物岩石地球化学通报 3, 335-342. (PDF)

[87] 李娟, 胡修棉*, 2013. 藏南定日地区上三叠统-古近系构造沉降分析与沉积盆地特征. 岩石学报 29, 3843-3851. (PDF)


[86] Hu, X.M.*, 2012. Testing the validity of Nd isotopes as a provenance tool in southern Tibet for constraining the initial India-Asia collision. Journal of Asian Earth Sciences 53, 51-58. (PDF)

[85] Hu, X.M.*, Scott, R.W., Cai, Y.F., Wang, C.S., Melinte-Dobrinescu, M.C., 2012. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth-Science Reviews 115, 217-248. (PDF)

[84] Hu, X.M.*, Sinclair, H.D., Wang, J.G., Jiang, H.H., Wu, F.Y., 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision. Basin Research 24, 520-543. (PDF)

[83] Hu, X.M.*, Wagreich, M., Yilmaz, I.O., 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research 38, 1-6. (PDF)

[82] Hu, X.M.*, Hu, Z.C., Wang, J.G., Yu, J.H., Xu, K.D., Jansa, L., Hu,W.X., 2012. Geology of the Fuding inlier in southeastern China: Implication for late Paleozoic Cathaysian paleogeography. Gondwana Research 22, 507-518. (PDF)

[81] Hu, X.M.*, Zhao, K.D., Yilmaz, I.O., Li, Y.X., 2012. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretaceous Research 38, 40-51. (PDF)

[80] He, L.F., Hu, X.M., Xu, L.G., He, Z.X., Li, W.L., 2012. Feasibility of monitoring hydraulic fracturing using time-lapse audio-magnetotellurics. Geophysics 77, 119-126. (PDF)

[79] Li, X., Cai, Y.F., Hu, X.M., Huang, Z.C., Wang, J.G., 2012. Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals 47, 45-58. (PDF)

[78] 安慰, 胡修棉, 王建刚, 2012. 藏南日喀则弧前盆地帕达那组沉积相分析. 沉积学报 30, 619-625. (PDF)

[77] 郭荣华, 胡修棉*, 王建刚, 2012. 日喀则弧前盆地碎屑铬尖晶石地球化学与物源判别. 地学前缘 19, 213-220. (PDF)

[76] 孙高远, 胡修棉*, 2012. 仲巴地体的板块亲缘性_来自碎屑锆石U_Pb年代学和Hf同位素的证据. 岩石学报 28, 1635-1646. (PDF)

[75] 于津海, 刘潜, 胡修棉, 王勤, Y,O.R.S., 2012. 华南晚古生代岩浆活动的新发现:岛弧还是陆内造山? 科学通报 57, 2964-2971. (PDF)


[74] Li, X., Hu, X.M.*, Cai, Y.F., Han, Z.Y., 2011. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic. Sedimentary Geology 235, 91-99. (PDF)

[73] Wang, C.S., Hu, X.M.*, Huang, Y. J., Wagreich, M., Scott, R., Hay, W., 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology 235, 27-37. (PDF)

[72] Wang, J.G., Hu, X.M.*, Jansa, L., Huang, Z.C., 2011. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet: Constraints on the Timing of Initial India-Asia Collision. Journal of Geology 119, 293-309. (PDF)

[71] Wagreich, M., Hu, X.M., Sageman, B., 2011. Causes of oxic–anoxic changes in Cretaceous marine environments and their implications for Earth systems—An introduction. Sediment Geol 235, 1-4. (PDF)

[70] 孙高远, 胡修棉*, 王建刚, 2011. 藏南江孜县白沙地区宗卓混杂岩:岩石组成与物源区分析. 地质学报 85,1343-1351. (PDF)

[69] 李响, 蔡元峰, 胡修棉, 黄志诚, 王建刚, 耿建华, 2011. 藏西南札达白垩纪Albian期海绿石的矿物学特征及地质意义. 地质论评 57,63-72. (PDF)

[68] 吴聪, 史宇坤, 胡修棉, 2011. 藏南定日上白垩统平行不整合界线及其浮游有孔虫时代约束. 微体古生物学报 28, 381-402. (PDF)


[67] Hu, X.M.*, Jansa, L., Chen, L., Griffin, W. L., O'Reilly, S.Y., Wang, J. G., 2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology 223, 193-205.   (PDF)

[66] Wang, J.G., Hu, X.M.*, Wu, F.Y., Jansa, L., 2010. Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology 231, 74-84 (PDF)

[65] 王成善, 郑和荣, 冉波, 刘本培, 李祥辉, 李亚林, 孙红军, 陈建平, 胡修棉, 2010. 活动古地理重建的实践与思考——以青藏特提斯为例. 沉积学报 28, 849-860. (PDF)

[64] 张晓峰, 胡修棉, 王成善, 2010. 藏南白垩纪缺氧与富氧沉积的稀土元素地球化学特征. 矿物岩石地球化学通报 29, 173-180. (PDF)


[63] Hu, X.M., Chen, W., Ji, J., 2009, Origin of the Cretaceous Oceanic Red Beds from the Vispi Quarry Section, Central Italy:visible reflectance and inorganic geochemistry.SEPM Special Publication 91, 183-197. (PDF)

[62] Wang, C.S., Hu, X.M., Huang, Y.J., Scott, R.W., and Wagreich, M., 2009, Cretaceous Oceanic Red Beds (CORB): A Window on Global Oceanic/Climatic Change:Cretaceous Oceanic Red Beds. SEPM Special Publication 91, 13-33. (PDF)

[61] Cai, Y.F., Li, X., Hu, X.M., Chen, X.M., Pan, Y.G., 2009. Paleoclimatic approach to the origin of the coloring of Turonian pelagic limestones from the Vispi Quarry section (Cretaceous, central Italy). Cretaceous Research 30, 1205-1216. (PDF)

[60] Li, G.B., Jiang, G.Q., Hu, X.M., Wan, X.Q., 2009. New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China, and their paleogeographic and paleoceanographic implications. Cretaceous Research 30, 1005-1018. (PDF)

[59] Jiang, S.Y., Jansa, L., Skupien, P., Yang, J.H., Vasicek, Z., Hu, X.M., Zhao, K.D., 2009. Geochemistry of intercalated red and gray pelagic shales from the Mazak Formation of Cenomanian age in Czech Republic. Episodes 32, 3-12. (PDF)


[58] Hu, X.M., Jansa, L., Wang, C.S., 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research 29, 301-315. (PDF)

[57] 韩志艳, 胡修棉, 季峻峰, 黄永建, 黄志诚, 2008. 北大西洋ODP1049C孔Aptian-Albian期高频旋回大洋红层的成因: 矿物学证据. 地质学报 82, 124-132. (PDF)

[56] 王建刚, 胡修棉, 2008. 砂岩副矿物的物源区分析新进展. 地质论评 54, 670-678. (PDF)

[55] 王建刚, 胡修棉, 黄志诚, 2008. 藏南桑单林地区晚白垩世—始新世砂岩物源区分析. 地质学报 82, 92-103.   (PDF)

[54] 程文斌, 顾雪祥, 胡修棉, 李有核, 董树义, 2008. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比. 地质学报 82, 37-41. (PDF)

[53] 陈曦, 王成善, 胡修棉, 黄永建, 2008. 西藏江孜地区海相白垩系铁赋存状态及古海洋意义. 地质学报 82, 77-84.(PDF)

[52] 陈曦, 王成善, 胡修棉, 黄永建, 魏玉帅, 王平, 2008. 西藏南部江孜盆地上侏罗统至古近系沉积岩石学特征与盆地演化. 岩石学报 24, 616-624. (PDF)

[51] 傅培刚, 宋之光, 胡修棉, 王成善, 2008. 藏南白垩系黑-红层沉积岩有机质组成分布特征. 地质学报 82, 85-91. (PDF)

[50] 蔡元峰, 李响, 潘宇观, 胡修棉, 2008. Mn~(2+)和Fe~(3+)的致色作用: 来自意大利白垩纪远洋红色灰岩的启示. 地质学报 82, 133-138. (PDF)


[49] Huang, Y.J., Wang, C.S., Hu, X.M., Chen, X., 2007. Burial Records of Reactive Iron in Cretaceous Black Shales and Oceanic Red Beds from Southern Tibet. Acta Geologica Sinica (English Edition) 81, 463-469. (PDF)

[48] Li, Y.L., Wang, C.S., Hu, X.M., M.Bak., Wang, J.J., Chen, L., 2007. Characteristics of Early Eocene radiolarian assemblages of the Saga area, southern Tibet and their constraint on the closure history of the Tethys. Chinese Science Bulletin 52, 2108-2114. (PDF)

[47] Li, G.B., Wan, X.Q., Jiang, G.Q., Hu, X.M., Nicolas, G., Hang, H.D., Chen, X., 2007. Late Cretaceous Foraminifera melange in Southern Tibet. Acta Geol Sin-Engl 81, 917-924. (PDF)

[46] 胡修棉, 王成善, 2007. 白垩纪大洋红层:特征、分布与成因. 高校地质学报 13, 1-13. (PDF)

[45] 陈蕾, 胡修棉, 黄志诚, 2007. 藏南早白垩世火山岩屑砂岩对印度大陆北缘火山事件的约束. 地质学报 81, 501-510. (PDF)

[44] 李亚林, 王成善, 胡修棉, M Bak, 王进军, 陈蕾, 李祥辉, 2007. 西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束. 科学通报 52, 1430-1435. (PDF)

[43] 李亚林, 王成善, 胡修棉, M Bak, 王立成, 王进军, 陈蕾, 2007. 西藏萨嘎地区构造岩石地层新认识及其构造意义. 矿物岩石 27, 55-62. (PDF)

[42] 李祥辉, H.C. Jenkyns, 王成善, 胡修棉, 赵兵, 黄永建, 2007. 西藏南部晚白垩世坎潘期碳同位素偏移及其意义. 地球化学 36, 279-285. (PDF)


[41] Hu, X.M.*, Jansa, L., Sarti, M., 2006. Mid-Cretaceous oceanic red beds in the Umbria-Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography Palaeoclimatology Palaeoecology 233, 163-186.   (PDF)

[40] Hu, X.M., Wang, C.S., Li, X.H., Jansa, L., 2006. Upper Cretaceous oceanic red beds in southern Tibet:Lithofacies, environments and colour origin. China Science Series D Earth Sciences 49, 785-795.   (PDF)

[39] Scott, R.W., Wang, C.S., Hu, X.M., 2006. Cretaceous oceanic red beds (CORB), response to paleoclimatic/paleoceanographic global changes and regional tectonics - Workshop of IGCP 463 & 494. Episodes 29, 49-51. (PDF)

[38] Li, X.H., Jenkyns, H.C., Wang, C.S., Hu, X. M., Chen, X., Wei, Y.S., Huang, Y.J., Cui, J., 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society 163, 375-382. (PDF)

[37] Li, X.H., Wang, C.S., Jansa, L., Hu, X.M., 2006. Age of initiation of the India-Asia collision in the east-central Himalaya: A discussion. Journal of Geology 114, 637-640. (PDF)

[36] 胡修棉, 王成善, 李祥辉, 陈蕾, 2006. 藏南古错地区上侏罗统上部和下白垩统沉积相. 古地理学报 8, 175-186. (PDF)

[35] 胡修棉, 王成善, 李祥辉, Jansa, L., 2006. 藏南上白垩统大洋红层:岩石类型、沉积环境与颜色成因. 中国科学:地球科学 36, 811-821. (PDF)

[34] 李祥辉, 王成善, JENKYN, H.C., 崔杰, 胡修棉, 石和, 赵鹏肖, 陈曦, 魏玉帅, 黄永建, 赵兵, 2006. 西藏南部上白垩统高分辨率全岩碳同位素地层学. 地质论评 52, 304-313. (PDF)


[33] Hu, X.M.*, Jansa, L., Wang, C. S., Sarti, M., Bak, K., Wagreich, M., Michalik, J., Sotak, J., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 26, 3-20. (PDF)

[32] Hu, X.M., Lilian, S., Sarti, M., 2005. 西班牙南部Subbetic中带Río Fardes剖面Turonian-Coniacian大洋红层(英文). 地学前缘 12, 38-44. (PDF)

[31] Wang, C.S., Hu, X.M.*, Sarti, M., Scott, R.W., Li, X.H., 2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research 26, 21-32. (PDF)

[31] Li, X.H., Wang, C.S., Hu, X.M., 2005. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research 26, 33-41. (PDF)

[30] Zou, Y.R., Kong, F., Peng, P.A., Hu, X.M., Wang, C.S., 2005. Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: a preliminary study. Cretaceous Research 26, 65-71. (PDF)

[29] 胡修棉, 2005. 白垩纪中期异常地质事件与全球变化. 地学前缘 12, 222-230. (PDF)

[28] 王成善, 胡修棉, 2005. 白垩纪世界与大洋红层. 地学前缘 12, 11-21. (PDF)

[27] 陈曦, 王成善, 李祥辉, 胡修棉, 2005. 阿尔卑斯—喀尔巴阡上白垩统大洋红层特征与对比. 地学前缘 12, 61-68. (PDF)

[26] 李祥辉, 王成善, Jenkyns,H.C., 成鑫荣, 崔杰, 胡修棉, 2005. 西藏特提斯喜马拉雅白垩纪中期Cenomanian Turonian期碳同位素偏移. 地球科学 30, 317-327. (PDF)

[25] IGCP463/494秘书处, 2005. “白垩纪大洋红层——海洋/气候响应”研究进展综述. 地学前缘 12, 69-80. (PDF)


[24] Wang, C.S., Huang, Y.J., Hu, Y.M., Li, X.H., 2004. Cretaceous oceanic redbeds: Implications for paleoclimatology and paleoceanography. Acta Geologica Sinica-English Edition 78, 873-877. (PDF)

[23] Melinte, M.C., Scott, R., Wang, C.S., Hu, X.M., 2004. Cretaceous oceanic red bed deposition, a tool for paleoenvironmental changes—Workshop of IGCP 463 & 494. Episodes 28, 121-123. (PDF)

[22] 胡修棉, 2004. 白垩纪“温室”气候与海洋. 中国地质 31, 442-448. (PDF)

[21] 李祥辉, 胡修棉, 黄永建, 王成善, 陈曦, 魏玉帅, 2004. 白垩纪古海洋气候变化及主要问题. 地球科学进展 19, 83-92. (PDF)


[20] 刘志飞, 胡修棉, 2003. 白垩纪至早第三纪的极端气候事件. 地球科学进展 18, 681-690. (PDF)

[19] 王成善, 李祥辉, 胡修棉, 2003. 再论印度—亚洲大陆碰撞的启动时间. 地质学报 77, 16-24. (PDF)


[18] Hu, X.M., Wang, C.S., Sarti, M., Scott, R.W., 2002. First Workshop of IGCP 463: Upper Cretaceous Oceanic Red Beds. Eiposides 25, 273-274. (PDF)

[17] Wang, C.S., Li, X.H., Hu, X.M., Jansa, L.F., 2002. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova 14, 114-120. (PDF)

[16] 胡修棉, 黄永健, 2002. 与“南永2井珊瑚礁‘红色与黑色沉积夹层’的成因及环境意义初探”商榷. 科学通报 47, 318-319. (PDF)

[15] 李祥辉, 包向农, 胡修棉, 王成善, 万晓樵, 范善发, 2002. P/E界线全球事件在西藏定日地区的响应. 海洋地质与第四纪地质 22, 69-74. (PDF)


[14] Hu, X.M., Wang, C.S., Li, X.H., Fan, S.F., Peng, P.A., 2001. The Cenomanian-Turonian Anoxic Event in Southern Tibet: A Study of Organic Geochemistry. Chinese Journal of Geochemistry 20, 289-295.   (PDF)

[13] Wang, C.S., Hu, X.M., Jansa, L., Wan, X.Q., Tao, R., 2001. The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research 22, 481-490. (PDF)

[12] 胡修棉, 王成善, 2001. 古海洋溶解氧研究方法综述. 地球科学进展 16, 65-71. (PDF)

[11] 胡修棉, 王成善, 李祥辉, 2001. 藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件. 自然科学进展 11, 51-58. (PDF)

[10] 胡修棉, 王成善, 李祥辉, 2001. 大洋缺氧事件的碳稳定同位素响应. 成都理工学院学报 28, 1-6. (PDF)

[9] 李祥辉, 王成善, 胡修棉, 2001. 西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义. 地质学报 75, 314-321. (PDF)


[8] 胡修棉, 王成善, 李祥辉, 范善发, 彭平安, 2000. 西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究. 地球化学 29, 417-424. (PDF)

[7] 胡修棉, 吴德超, 2000. 米仓山南缘基底断裂带上两段有限应变和形成条件. 成都理工学院学报 27, 232-236. (PDF)

[6] 李祥辉, 王成善, 胡修棉, 万晓樵, 徐钰林,赵文金, 2000. 朋曲组——西藏南部最高海相层位一个新的地层单元 地层学杂志 24, 243-248. (PDF)

[5] 李祥辉, 王成善, 胡修棉, 2000. 深海相中的砂质碎屑流沉积——以西藏特提斯喜马拉雅侏罗-白垩系为例. 矿物岩石 20, 45-51. (PDF)


[4] 胡修棉, 胡修棉, 1999. 100Ma以来若干重大地质事件与全球气候变化. 大自然探索 18, 53-58.

[3] 王成善, 胡修棉, 李祥辉, 1999. 古海洋溶解氧与缺氧和富氧问题研究. 海洋地质与第四纪地质, 19, 42-50. (PDF)

[2] 王成善, 胡修棉, 万晓樵, 陶然, 1999. 西藏南部中白垩世Cenomanian Tutonian缺氧事件研究. 自然杂志 24, 244-246. (PDF)


[1] 吴德超, 胡修棉,1998. 四川南江上两脆-韧性叠加断裂带构造解析. 成都理工学院学报 25, 48-54. (PDF)