(99) Li, R., Tan, Q., Wang, X.L.*, Sun, X., Yang, T., Xia, Y., Guan, Y., Feng, Y., 2023. A metasedimentary origin for gold deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China. Ore Geology Reviews, 159, 105560, https://doi.org/10.1016/j.oregeorev.2023.105560.Li et al.2023--A metasedimentary origin for gold deposits in the .pdf
(98) Shu, X.-J., Wang, X.L.*, Chen, L., Wang, D., Dai, Z.-Y., 2023. Open-system differentiation of mafic magmas before the formation of layered Fe-Ti(V) deposits in Southeast China. Ore Geology Reviews, 158, 105527, https://doi.org/10.1016/j.oregeorev.2023.105527.Shu et al.2023--Open-system differentiation of mafic magmas before.pdf
(97) Boschi, S., Wang, X.L., Hui, H.J., Yin, Z.J., Guan, Y., Hu, H., Zhang, W.L., Chen, J.Y., Li, W.*, 2023. Compositional variability of 2.0-Ga lunar basalts at the Chang'e-5 landing site. Journal of Geophysical Research - Planets, 128, e2022JE007627, http://doi.org/10.1029/2022JE007627.Boschi et al.2023--Compositional Variability of 2.0‐Ga Lunar Basalts .pdf
(96) Ma, J.F., Wang, X.L., Yang A.Y., Zhao, T.P.*, 2023. Tracking Crystal-melt Segregation and Accumulation in the Intermediate Magma Reservoir. Geophysical Research Letters, 50, e2022GL102540, http://dx.doi.org/10.1029/2022GL102540.Ma et al.2023--Tracking Crystal-Melt Segregation and Accumulation.pdf
(95) Li, R., Wu, N., Shen, S.Z., Wang, X.L., Chen, H., Algeo, T.J., Zhang, H., Zhang, F., 2023. A rapid onset of ocean acidification associated with the end-Permian mass extinction. Global and Planetary Change, 225, 104130, https://doi.org/10.1016/j.gloplacha.2023.104130.Li et al.2023--A rapid onset of ocean acidification associated wi.pdf
(94) Zhang, H.J.*, Lü, Q.T., Wang, X.L., Han, S.C., Liu, L.J., Gao, L., Wang, R., Hou, Z.Q.*, 2023. Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China. Nature Communications, 14, 2718. https://doi.org/10.1038/s41467-023-37855-5.Zhang et al.2023--Seismically imaged lithospheric delamination and i.pdf
(93) Li, R.C., Wang, X.L.*, Guan, Y., Gu, J., Tian, L.-L., 2023. The feasibility of using pyrite standard to calibrate sulfur isotope ratio of marcasite during SIMS analysis. Journal of Analytical Atomic Spectrometry, 38, 1016-1020 (Back cover article), https://doi.org/10.1039/D3JA00009E. 2023-Li_et_al-J._Anal._At._Spectrom.-The_feasibility_of_using_a_pyrite_standard_to_calibrate_the_sulfur_isotope.pdf
(92) Jiang, C.H., Wang, D., Du, D.H., Wang, X.L.*, 2023. Estimation of an ephemeral cooling for silicic magma reservoirs using thermal simulation. Journal of Asian Earth Sciences, 241: 105442, https://doi.org/10.1016/j.jseaes.2022.105442.Jiang et al.2023--Estimation of an ephemeral cooling for silicic mag.pdf
(91) Li, R.C., Wang, X.L.*, 2022. External fluid incursion during Cu-mineralization stage of Mina Justa iron oxide copper-gold (IOCG) deposit: Evidence from triple sulfur isotope geochemistry of chalcopyrite.Ore Geology Reviews, 149, 105102, https://doi.org/10.1016/j.oregeorev.2022.105102.Li and Wang2022--External fluid incursion during Cu-mineralization .pdf
(90) Jiang, C.H., Du, D.H., Wang, X.L.*, 2022. Degassing and environmental effect of intracontinental transcrustal magmatic system. Acta Petrologica Sinica, 38(5), 1360-1374. doi: 10.18654/1000-0569/2022.05.06.蒋昌宏 et al.2022--陆内穿地壳岩浆系统及其去气作用和环境效应.pdf
(89) Li, L.-S., Wang, X.L.*, Yakymchuk, C., Schorn, S., Yu, J.-H., Wang, D., Li, J.Y., Du, D.H., Huang, Y., 2022. A refined study of Paleoproterozoic high-pressure granulite-facies metamorphism in the Kongling Complex of northern Yangtze Block. Precambrian Research, 378, 106741, https://doi.org/10.1016/j.precamres.2022.106741.Li_et_al-2022-Precambrian_Research-A_refined_study_of_Paleoproterozoic_high-pressure_granulite-facies_metamorphism.pdf
(88) Jiang, W., Yu, J.-H.*, Griffin, W.L., Wang, F.Q., Wang, X.L., Pham T.H., Nguyen, D.L., 2022. Where did the Kontum Massif in central Vietnam come from?. Precambrian Research, 377, 106725, https://doi.org/10.1016/j.precamres.2022.106725.Jiang et al.2022--Where did the Kontum Massif in central Vietnam com.pdf
(87) Wang, D.*, Wang, X.L., Cai, Y., Li, J.Y., Du, D.H., Shu, X.J., 2022. Exploring the Sn–W metallogenic potential of Late Jurassic Ganfang-Guyangzhai granite suite, South China: Zircon and apatite geochemistry.Ore Geology Reviews, 144, 104863. https://doi.org/10.1016/j.oregeorev.2022.104863.Wang et al.2022--Exploring the Sn–W metallogenic potential of Late .pdf
(86) Nguyen, D.L., Wang, R.C.*, Yu, J.H.*, Wang, X.L., Nguyen, Q.L., Pham, T.H., Do, V.N., 2022. Geochronology and geochemistry of the PiaOac granites: Implication for Late Cretaceous magmatism and metallogeny in NE Vietnam. Ore Geology Review, 142, 104727. https://doi.org/10.1016/j.oregeorev.2022.104727.Nguyen et al.2022--Geochronology and geochemistry of the PiaOac grani.pdf
(85) Pham T.H.*, Pham M., Wang, X.L., Anh T.Q.N., Kenta K., Truong C.C., 2022. Zircon U–Pb geochronology and Sr–Nd–Hf isotopic compositions of the felsic dykes from the Dalat zone, southern Vietnam: petrogenesis and geological significance. International Geology Review, 64(19): 2822-2836,https://doi.org/10.1080/00206814.2021.2015632.Hieu et al.2022--Zircon U–Pb geochronology and Sr–Nd–Hf isotopic co.pdf
(84) Du, D.-H., Tang, M., Li, W., Kay, S.M., Wang, X.-L.*, 2022. What drives Fe depletion in calc-alkaline magma differentiation: Insights from Fe isotopes. Geology. https://doi.org/10.1130/G49705.1. Du_et_al-2022-Geology-What_drives_Fe_depletion_in_calc-alkaline_magma_differentiation_-_Insights_from.pdf
(83) Du, D.-H., Wang, X.-L.*, Wang, S., Miller, C.F., Xu, X., Chen, X., Zhang, F.-F., 2022. Deciphering Cryptic Multi-Stage Crystal-Melt Separation during Construction of the Tonglu Volcanic–Plutonic Complex, SE China. Journal of Petrology 63, egab098. https://doi.org/10.1093/petrology/egab098. Du_et_al-2022-Journal_of_Petrology-Deciphering_Cryptic_Multi-Stage_Crystal-Melt_Separation_during_Construction_of.pdf
(82) Xu, H., Qiu, J.S., Wang, X.L.*, Hong, Y.-F., Wang, R.-Q., Li, Y.-F., 2022. Slow crystal settling controls the diversity of high-silica granites of the Late Cretaceous Shengsi Pluton at northeastern tip of southeast China. Journal of Asian Earth Sciences, 223, 104986, https://doi.org/10.1016/j.jseaes.2021.104986.2022-Xu_et_al-Journal_of_Asian_Earth_Sciences-Slow_crystal_settling_controls_the_diversity_of_high-silica_granites_of_the.pdf
(81) Huang, Y., Wang, X.-L.*, Li, J.-Y., Wang, D., Jiang, C.-H., Li, L.-S., 2021. Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area. Precambrian Research 365, 106382. https://doi.org/10.1016/j.precamres.2021.106382. Huang et al.2021--Early Neoproterozoic tectonic evolution of norther.pdf
(80) Zhang, Y.Z., Wang, X.L.*, Li, J.-Y., He, Z.Y., Zhang, F.F., Chen, X., Wang, S., Du, D.H., Huang, Y., Jiang, C.H., 2021. Oligocene Leucogranites of the Gangdese Batholith, Southern Tibet: Fractional Crystallization of Felsic Melts from Juvenile Lower Crust. Journal of Petrology 62, egab076. https://doi.org/10.1093/petrology/egab076. Zhang_et_al-2021-Journal_of_Petrology-Oligocene_Leucogranites_of_the_Gangdese_Batholith,_Southern_Tibet_-_Fractional.pdf
(79) Wang, D., Wang, X.L.*, Bindeman, I.N., Du, D., Li, J., Jiang, C., 2021. Ephemeral Magma Reservoirs During the Incremental Growth of the Neoproterozoic Jiuling Composite Batholith in South China. JGR Solid Earth 126. https://doi.org/10.1029/2021JB022758. Wang_et_al-2021-JGR_Solid_Earth-Ephemeral_Magma_Reservoirs_During_the_Incremental_Growth_of_the_Neoproterozoic.pdf
(78) Wang, X.L.*, Wang, D., Du, D.H., Li, J.-Y., 2021. Diversity of granitic rocks constrained by disequilibrium melting and subsequent incremental emplacement and differentiation. Lithos, 106255, https://doi.org/10.1016/j.lithos.2021.106255. Wang et al.2021--Diversity of granitic rocks constrained by disequi.pdf
(77) Li, J.-Y., Tang, M., Lee, C.-T. A., Wang, X.L.*, Gu, Z.D., Xia, X.P., Wang, D., Du, D.H., Li, L.S., 2021. Rapid endogenic rock recycling in magmatic arcs. Nature Communications, https://doi.org/10.1038/s41467-021-23797-3.Li2021-Nat Commun-Rapid endogenic rock recycling in magmatic arcs.pdf
(76) Li, R.C., Chen, H.Y.*, Wu, N.P., Wang, X.L., Xia, X.P., 2021. Multiple sulfur isotopes in post-Archean deposits as a potential tracer for fluid mixing processes: An example from an iron oxide–copper–gold (IOCG) deposit in southern Peru.Chemical Geology 575, 120230, https://doi.org/10.1016/j.chemgeo.2021.120230.Li2021-Chemical Geology-Multiple sulfur isotopes in post-Archean deposits as a potential tracer for.pdf
(75) Wang, X.L.*, Liu, J.X., Lü, Q.-T., Wang, S., Wang, D., Chen, X., 2021. Evolution of deep crustal hot zones constrained by the diversity of Late Mesozoic magmatic rocks in SE China.Ore Geology Reviews134, 104143, https://doi.org/10.1016/j.oregeorev.2021.104143.Wang2021-Ore Geology Reviews-Evolution of deep crustal hot zones constrained by the diversity of Late.pdf
(74) Li, J.-Y., Wang, X.L.*, Wang, D., Du, D.H., Yu, J.H., Gu, Z.-D., Huang, Y., Li, L.-S., 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: from continental rifting to subduction–accretion. Precambrian Research 355, 106081, https://doi.org/10.1016/j.precamres.2020.106081. Li2021-Precambrian Research-Pre-Neoproterozoic continental growth of the Yangtze Block.pdf
(73) Wang, D., Wang, X.L.*. 2021. Dual Mixing for the Formation of Neoproterozoic Granitic Intrusions within the Composite Jiuling Batholith, South China. Contributions to Mineralogy and Petrology, 176: 7, DOI: 10.1007/s00410-020-01757-2. Wang2021--Dual mixing for the formation of Neoproterozoic gr.pdf
(72) 王孝磊*, 刘福来, 李军勇, 王迪. 2020. 前寒武纪俯冲和板块构造的渐进式演变. 中国科学-地球科学, 50(12), 1947 ~ 1968, doi: 10.1360/SSTe-2020-0053. [Wang, X.L.*, Liu, F.-L., Li, J.-Y., Wang, D. 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics. Science China Earth Sciences 63(12): 2068–2086, https://doi.org/10.1007/s11430-020-9698-0] Wang2020-Sci. China Earth Sci.-The progressive onset and evolution of Precambrian subduction and plate.pdf
(71) 徐夕生*, 王孝磊, 赵凯, 杜德宏. 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39(5)
(70) Jiang, W., Yu, J.H.*, Wang, X.L., Griffin, W.L., T. H. Pham, D.L. Nguyen, Wang, F.Q., 2020. Early Paleozoic magmatism in northern Kontum Massif, Central Vietnam: Insights into tectonic evolution of the eastern Indochina Block. Lithos 376–377, 105750. https://doi.org/10.1016/j.lithos.2020.105750. Jiang2020-Lithos-Early Paleozoic magmatism in northern Kontum Massif, Central Vietnam.pdf
(69) Jiang, C.-H., Wang, X.L.*, Wang, S., Du, D.H., Huang, Y., Zhang Y.-Z., Wang, D. 2020. Paleoproterozoic basement beneath the Eastern Cathaysia Block revealed by zircon xenocrysts from late Mesozoic volcanics. Precambrian Research 350, 105922. https://doi.org/10.1016/j.precamres.2020.105922. Jiang2020-Precambrian Research-Paleoproterozoic basement beneath the Eastern Cathaysia Block revealed by.pdf
(68) Liu, J.X., Wang, S., Wang, X.L.*, Du, D.H., Xing, G.F., Fu, J.M., Chen, X., Sun, Z.M., 2020. Refining the spatio-temporal distributions of Mesozoic granitoids and volcanic rocks in SE China. Journal of Asian Earth Sciences 201, 104503, doi: 10.1016/j.jseaes.2020.104503. Liu2020-Journal of Asian Earth Sciences-Refining the spatio-temporal distributions of Mesozoic granitoids and volcanic.pdf
(67) 王硕, 王孝磊*, 杜德宏. 2020. 火山岩-侵入岩的联系. 高校地质学报, 26(5), 497-505.
(66) Huang, D.L., Wang, X.L.*, Xia, X.P., Zhang, F.F., Wang, D., Sun, Z.M., Li, J.Y., Yang, Q., Du, D.H., Chen, X. 2020.Crustal anatexis recorded by zircon grains from early Paleozoic granitic rocks in Southeast China. Lithos, 370–371, 105598, doi: 10.1016/j.lithos.2020.105598.Huang2020-Lithos-Crustal anatexis recorded by zircon grains from early Paleozoic granitic rocks.pdf
(65) Sun, Z.-M., Wang, X.L.*, Zhang, F.-F., Xie, H.-Q., Zhao, K., and Li, J.-Y., 2020.Diversity of felsic rocks in oceanic crust: Implications from the Neoproterozoic plagiogranites within the Northeast Jiangxi ophiolite, southern China. Journal of Geophysical Research: Solid Earth 125, e2019JB017414, DOI:10.1029/2019JB017414.Sun2020-Journal of Geophysical Research Solid Earth-Diversity of Felsic Rocks in Oceanic Crust.pdf
(64) Du, D. H., Li, W., Wang, X.L.*, Shu, X.J., Yang, T., Sun, T., 2019. Fe isotopic fractionation during the magmatic–hydrothermal stage of granitic magmatism. Lithos, in press, doi: 10.1016/j.lithos.2019.105265.Du2019-Lithos-Fe isotopic fractionation during the magmatic-hydrothermal stage of granitic.pdf
(63) Huang, D.L., Wang, X.L.*, 2019. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China. Journal of Asian Earth Sciences 184, 104001, doi: 10.1016/j.jseaes.2019.104001.Huang2019-Journal of Asian Earth Sciences-Reviews of geochronology, geochemistry, and geodynamic processes of.pdf
(62) Zhu, G.L., Yu, J. H.*, Zhou, X.Y., Wang, X.L., Wang, Y.D., 2019. The western boundary between the Yangtze and Cathaysia blocks, new constraints from the Pingbian Group sediments, southwest South China Block. Precambrian Research 331, 105350.Zhu2019-Precambrian Research-The western boundary between the Yangtze and Cathaysia blocks, new constraints.pdf
(61) Chen, X., Lee, C.T., Wang, X.L.*, Tang, M., 2019. Influence of water on granite generation: Modeling and perspective.Journal of Asian Earth Sciences 174, 126–134, doi:10.1016/j.jseaes.2018.12.001.Chen2019-Journal of Asian Earth Sciences-Influence of water on granite generation.pdf
(60) Huang, D.L., Wang, X.L.*, Xia, X.P., Wan, Y.S., Zhang, F.F., Li, J.Y., Du, D.H., 2019. Neoproterozoic low-δ18O zircons revisited: implications for Rodinia configuration.Geophysical Research Letters 46,678–688. doi:10.1029/2018GL081117.Huang2019-Geophysical Research Letters-Neoproterozoic Low-delta O-18 Zircons Revisited.pdf
(59) Wang, G.G., Ni, P., Zhu, A.D., Wang, X.L., Li, L., Hu, J.S., Lin, W.H., Huang, B., 2018. 1.01–0.98 Ga mafic intra-plate magmatism and related Cu-Au mineralization in the eastern Jiangnan orogen: Evidence from Liujia and Tieshajie basalts. Precambrian Research 309, 6–21, doi: 10.1016/j.precamres.2017.04.018.Wang2018-Precambrian Research-1.pdf
(58) Zhao, J.H., Zhang, S.B., Wang, X.L., 2018. Neoproterozoic geology and reconstruction of South China. Precambrian Research 309, 1–5, doi: 10.1016/j.precamres.2018.02.004.Zhao2018-Precambrian Research-Neoproterozoic geology and reconstruction of South China.pdf
(57) Li, J.Y., Wang, X.L.*, Gu, Z.D., 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly. Precambrian Research 309, 181–197, doi: 10.1016/j.precamres.2017.04.040.Li2018-Precambrian Research-Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern.pdf
(56) Sun, Z.M., Wang, X.L.*, Qi, L., Zhang, F.F., Wang, D., Li, J.Y., Yu, M.G., Shu, X.J., 2018. Formation of the Neoproterozoic ophiolites in southern China: new constraints from trace element and PGE geochemistry and Os isotopes. Precambrian Research 309, 88–101, 10.1016/j.precamres.2017.12.042.Sun2018-Precambrian Research-Formation of the Neoproterozoic ophiolites in southern China.pdf
(55) Zhang, F.F., Wang, X.L.*, Sun, Z.M., Chen, X., Zhou, X.H., Yang, T., 2018. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area: Constraints on the initiation of Neoproterozoic rifting in South China. Precambrian Research 309, 138–151,doi: 10.1016/j.precamres.2017.04.008.Zhang2018-Precambrian Research-Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the.pdf
(54) Chen, X., Wang, X.L.*, Wang, D., Shu, X.J., 2018. Contrasting mantle-crust melting processes within orogenic belts: Implications from two episodes of mafic magmatism in the western segment of the Neoproterozoic Jiangnan Orogen in South China. Precambrian Research 309, 123–137, doi: 10.1016/j.precamres.2017.04.001Chen2018-Precambrian Research-Contrasting mantle-crust melting processes within orogenic belts.pdf
(53) Wang, D., Wang, X.L.*, Cai, Y., Goldstein, S.L., Yang, T., 2018. Do Hf isotopes in magmatic zircons represent those of their host rocks? Journal of Asian Earth Sciences 154, 202-212, doi: 10.1016/j.jseaes.2017.12.025.Wang2018-Journal of Asian Earth Sciences-Do Hf isotopes in magmatic zircons represent those of their host rocks.pdf
(52) Li, J.Y., Wang, X.L.*, Gu, Z.D., 2018. Petrogenesis of the Jiaoziding granitoids and associated basaltic porphyries: Implications for extensive early Neoproterozoic arc magmatism in western Yangtze Block. Lithos 296–299, 547–562, doi:10.1016/j.lithos.2017.11.034.Li2018-Lithos-Petrogenesis of the Jiaoziding granitoids and associated basaltic porphyries.pdf
(51) Zhou XY, Yu JH*, O’Reilly SY, Griffin WL, Wang X.L, and Sun T, 2017. Sources of the Nanwenhe - Song Chay granitic complex (SW China – NE Vietnam) and its tectonic significance. Lithos, 290-291, 76-93, doi:/10.1016/j.lithos.2017.07.017. Zhou2017-Lithos-Sources of the Nanwenhe - Song Chay granitic complex (SW China - NE Vietnam).pdf
(50) Wang, D., Wang, X.L.*, Cai, Y., Chen, X., Zhang, F.R., and Zhang, F.F., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology 58, 1781–1810, doi:10.1093/petrology/egx074.Wang2017-Journal of Petrology-Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic.pdf
(49) Du, D.H., Wang, X.L.*, Yang, T., Chen, X., Li, J.Y., Li, W.Q.*, 2017. Origin of heavy Fe isotope compositions in high-silica igneous rocks: a rhyolite perspective. Geochimica et Cosmochimica Acta 218, 58–72, doi:10.1016/j.gca.2017.09.014.Du2017-Geochimica Et Cosmochimica Acta-Origin of heavy Fe isotope compositions in high-silica igneous rocks.pdf
(48) 王孝磊*, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成和演化. 矿物岩石地球化学通报, 36 (5), 714–735.
(47) 王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5), 1445–1458.
(46) Zhang, F.F., Wang, X.L.*, Wang, D., Yu, J.H., Zhou, X.H., Sun, Z.M., 2017. Neoproterozoic backarc basin on the southeastern margin of the Yangtze block during Rodinia assembly: New evidence from provenance of detrital zircons and geochemistry of mafic rocks. GSA Bulletin 129, 904–919, doi: 10.1130/B31528.1Zhang2017-GSA Bulletin-Neoproterozoic backarc basin on the southeastern margin of the Yangtze block.pdf
(45) Li, J.Y., Wang, X.L.*, Zhang, F.F., Zhou, X.H., Shu, X.J., 2016. A rhythmic source change of the Neoproterozoic basement meta-sedimentary sequences in the Jiangnan Orogen: Implications for tectonic evolution on the southeastern margin of the Yangtze Block. Precambrian Research 280, 46–60, doi: 10.1016/j.precamres.2016.04.012.Li2016-Precambrian Research-A rhythmic source change of the Neoproterozoic basement meta-sedimentary.pdf
(44) Wang, G.-G., Ni, P., Zhao, C., Wang, X.-L., Li, P., Chen, H., Zhu, A.-D., and Li, L., 2016. Spatio-temporal reconstruction of Late Mesozoic silicic large igneous province (SLIP) and related epithermal mineralization in South China: insights from the Zhilingtou volcanic-intrusive complex, Journal of Geophysical Research: Solid Earth 121, 7903–7928, doi:10.1002/2016jb013060.Wang2016-J. Geophys. Res. Solid Earth-Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province.pdf
(43) Wang, X.L.*, Coble, M.A., Valley, J.W., Shu, X.J., Kitajima, K., Spicuzza, M.J., Sun, T., 2014. Influence of radiation damage on Late Jurassic zircons from southern China: evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chemical Geology 389, 122–136, doi: 10.1016/j.chemgeo.2014.09.013.Wang2014-Chemical Geology-Influence of radiation damage on Late Jurassic zircon from southern China.pdf
(42) Xing, G.F.*, Wang, X.L.*, Wan, Y.S., Chen, Z.H., Jiang, Y., Kitajima, K., Ushikubo, T., Gopon, P., 2014. Diversity in early crustal evolution: 4100 Ma zircons in the Cathaysia Block of southern China. Scientific Reports 4, 5143, doi:10.1038/srep05143.Xing2014-Scientific Reports-Diversity in early crustal evolution.pdf
(41)Chen, X., Wang, X.L.*, Gao, J.F., Shu, X.J., Zhou, J.C., Qi, L., 2014.Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: geochemistry, petrogenesis and tectonic implications. Lithos 200–201, 35–48. doi: 10.1016/j.lithos.2014.04.007.Chen2014-Lithos-Neoproterozoic chromite-bearing high-Mg diorites in the western part of the.pdf
(40) Wang, X.L.*, Zhou, J.C., Griffin, W.L., Zhao, G.C., Yu, J.H., Qiu, J.S., Zhang, Y.J., Xing, G.F., 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research 242, 154–171, doi:10.1016/j.precamres.2013.12.023.Wang2014-Precambrian Research-Geochemical zonation across a Neoproterozoic orogenic belt.pdf
(39) Tang, M., Wang X.L.*, Shu X.J., Yang, T., Wang, D., Gopon, P., 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of zircon effect in crustal anatexis. Earth and Planetary Science Letters 389, 188–199, doi:10.1016/j.epsl.2013.12.036.Tang2014-Earth and Planetary Science Letters-
Hafnium isotopic heterogeneity in zircons from granitic rocks.pdf
(38) Wang, D., Wang, X.L.*, Zhou, J.C., Shu, X.J., 2013. Unravelling the Precambrian crustal evolution by Neoproterozoic basal conglomerates, Jiangnan orogen: U-Pb and Hf isotopes of detrital zircons. Precambrian Research 233, 223–236, doi:10.1016/j.precamres.2013.05.005.Wang2013-Precambrian Research-Unraveling the Precambrian crustal evolution by Neoproterozoic conglomerates,.pdf
(37) Wang, X.L.*, Zhou, J.C., Wan, Y.S., Kitajima, K., Wang, D., Bonamici, C., Qiu, J.S. and Sun, T., 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters 366, 71–82, doi: 10.1016/j.epsl.2013.02.011.Wang2013-Earth and Planetary Science Letters-Magmatic evolution and crustal recycling for Neoproterozoic strongly.pdf
(36) Shu, X.J., Wang, X.L.*, Sun, T., Chen, W.F., Shen, W.Z., 2013. Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerzoic granitoids. Journal of Asian Earth Sciences 74, 210–224, doi:10.1016/j.jseaes.2013.01.016.Shu2013-Journal of Asian Earth Sciences-Crustal formation in the Nanling Range, South China Block.pdf
(35) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., Kern, J., 2013. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal 48, 498–515, doi: 10.1002/gj.2464.Wang2013-Geological Journal-Lithospheric thinning and reworking of Late Archean juvenile crust on the.pdf
(34) 王孝磊*,于津海,舒徐洁,唐成虎,邢光福, 2013. 赣中周潭群副变质岩碎屑锆石U-Pb年代学. 岩石学报, 29(3), 801–811.
(33) 王孝磊*,舒徐洁,邢光福, 谢思文, 张春晖, 夏晗, 2012. 浙江诸暨地区石角-璜山侵入于LA-ICP-MS锆石U-Pb年龄——对超镁铁质球状岩成因的启示. 地质通报, 31(1), 75–81.
(32) Wang, X.L.*, Shu, X.J., Xu, X.S., Tang, M., Gaschnig, R., 2012. Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the Jiangnan orogen, southern China. Journal of Asian Earth Sciences 61, 243–256, doi:10.1016/j.jseaes.2012.10.017.Wang2012-Journal of Asian Earth Sciences-Petrogenesis of the Early Cretaceous adakite-like porphyries and associated.pdf
(31) Wang, G.G., Ni, P.*, Zhao, K.D., Wang, X.L., Liu, J.Q., Jiang, S.Y., Chen, H., 2012. Petrogenesis of the Middle Jurassic Yinshan volcanic-intusive complex, SE China: implications for tectonic evolution and Cu-Au mineralization. Lithos 150, 135–154, doi:10.1016/j.lithos.2012.05.030.Wang2012-Lithos-Petrogenesis of the Middle Jurassic Yinshan volcanic-intrusive complex, SE China.pdf
(30) Wang, X.L.*, Shu, L.S., Xing, G.F., Zhou, J.C., Tang, M., Shu, X., Qi, L., Hu, Y.-H., 2012. Post-orogenic extension in the eastern part of the Jiangnan Orogen: evidence from ca 800-760 Ma volcanic rocks. Precambrian Research 222-223, 404–423, doi: 10.1016/j.precamres.2011.07.003.Wang2012-Precambrian Research-Post-orogenic extension in the eastern part of the Jiangnan orogen.pdf
(29)Tang, M., Wang, X.L., Xu, X.-S.*, Zhu, C., Cheng, T., Yu, Y., 2012. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf–Nd isotopic decoupling. Gondwana Research 21, 266–280, doi:10.1016/ j.gr.2011.05.009.Tang2012-Gondwana Research-Neoproterozoic subducted materials in the generation of Mesozoic Luzong.pdf
(28) Shu, X.J., Wang, X.L.*, Sun, T., Xu, X.S., Dai, M.N., 2011. Trace elements, U–Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: implications for petrogenesis and W–Sn mineralization. Lithos 127, 468–482, doi:10.1016/j.lithos.2011.09.019.Shu2011-Lithos-Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in.pdf
(27) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., Griffin, W.L., Dai, M.N., Yang, Y.H., 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research 190, 35–47, doi: 10.1016/j.precamres.2011.08.004.Wang2011-Precambrian Research-Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma).pdf
(26) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research 182, 204–216. doi:10.1016/ j.precamres.2010.08.007.Wang2010-Precambrian Research-Melting of enriched Archean subcontinental lithospheric mantle.pdf
(25) 周金城*, 王孝磊, 邱检生. 2009. 江南造山带形成过程中若干新元古代地质事件. 高校地质学报, 15(4), 453–459.
(24) 戴宝章, 蒋少涌*, 王孝磊. 2009. 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约. 岩石学报, 25(11), 2889–2901.
(23) Zhou, J.C.*, Wang, X.L., Qiu, J.S., 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research 170, 27–42 doi:10.1016/ j.precamres. 2008.11.002.Zhou2009-Precambrian Research-Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern.pdf
(22) Wang, X.L.*, Zhao, G.C., Zhou, J.C., Liu, Y.S., Hu, J., 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research 14, 355–367. doi: 10.1016/j.gr.2008.03.001.Wang2008-Geological Magazine-Geochronology and geochemistry of Neoproterozoic mafic rocks from western.pdf
(21) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Jiang, S.Y., Shi, Y.R., 2008. Geochronology and geochemistry of Neoproterozoic mafic rocks from western
(20) 贺振宇, 徐夕生*, 王孝磊, 陈荣. 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11), 2524–2536.
(19) 周金城*, 王孝磊, 邱检生. 2008. 江南造山带是否格林威尔期造山带?—关于华南前寒武纪地质的几个问题. 高校地质学报, 14(1), 64–72.
(18) 于津海*, 王丽娟, 王孝磊, 邱检生, 赵蕾. 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6), 1441–1456.
(17) Wang, X.L.*, Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O’Reilly, S.Y., Xu, X.S., Liu, X.M., Zhang, G.L., 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Research 159, 117–131. doi: 10.1016/j.precamres.2007.06.005.Wang2007-Precambrian Research-Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan.pdf
(16) Xu, X.S.*, O’Reilly, S.Y., Griffin, W.L., Wang, X.L., Pearson, N.J., He, Z.Y., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research 158, 51–78.Xu2007-Precambrian Research-The crust of Cathaysia.pdf
(15) 胡建, 邱检生*, 王汝成, 蒋少涌, 凌洪飞, 王孝磊. 2006. 广东龙窝和白石冈岩体锆石U-Pb年代学、黑云母矿物化学及其成岩指示意义. 岩石学报, 22(10), 2464–2474.
(14) 周金城*, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2006. 东南沿海晚中生代镁铁质岩的Re-Os同位素组成. 岩石学报, 22(2), 407–413.
(13) 王孝磊, 周金城*, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约. 岩石学报, 22(2), 326–342.
(12) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Zhang, W.L., Liu, X.M., Zhang, G.L., 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi,
(11) Zhou, J.C.*, Jiang, S.Y., Wang, X.L., Yang, J.H., Zhang, M.Q., 2006. Study on lithogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian province. Science in China (series D) 49, 1020–1031 (被SCI收录). [周金城, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2005. 华南中侏罗世玄武岩的岩石地球化学研究-以福建藩坑玄武岩为例. 中国科学(D辑), 35(10), 927–936.]
(10) 周金城*, 王孝磊, 邱检生. 2005. 江南造山带西段岩浆作用特性. 高校地质学报, 11(4), 527–533.
(9) 邱检生*, 胡建, 王孝磊, 蒋少涌, 王汝成, 徐夕生. 2005. 广东河源白石冈岩体:一个高分异的I型花岗岩. 地质学报, 79(4), 503–514.
(8) Zhou, J.C.*, Jiang, S.Y., Wang, X.L., Yang, J.H., Zhang, M.Q., 2005. Re-Os isochron age of Fankeng basalts from Fujian of SE China and its geological significance. Geochemical Journal 39, 497–502.
(07) 王孝磊, 周金城*, 邱检生, 高剑锋. 2004. 湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据. 地质论评, 2004, 50(1), 65–76.
(06) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Gao, J.F., 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research 135, 79–103.Wang2004-Precambrian Research-Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan.pdf
(05) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Gao, J.F., 2004. Comment on “Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?” by Xian-Hua Li et al. (PR 122, 45-83, 2003). Precambrian Research 132, 401–403.
(04) Zhou, J.C.*, Wang, X.L., Qiu, J.S., Gao, J.F., 2004. Geochemistry of Meso- and Neoproterozoic mafic- ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochemical Journal 38, 139–152.
(03) 周金城*, 王孝磊, 邱检生, 高剑锋. 2003. 桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学. 岩石学报, 19(1), 9–18.
(02) 王孝磊, 周金城*, 邱检生, 高剑锋. 2003. 湖南中-新元古代火山侵入岩地球化学及成因意义. 岩石学报, 19(1), 49–60.
(01) 周金城*, 王孝磊, 邱检生, 高剑锋. 2003. 南桥高度亏损N-MORB的发现及其地质意义. 岩石矿物学杂志, 22(3), 211–216.
(1) Zhou JC and Wang XL, 2005. Experimental and theoretical petrology. Geological Publishing House, Beijing, pp. 1-256 (in Chinese, with English Abstract).
(2) Xu XS and Qiu JS, 2010. Igneous Petrology. Science Publishing House, Beijing, pp, 1-346 (Chapters 4, 5 and 12 are written by Wang XL) (in Chinese).
(3) Zhou JC,Wang XL, and Qiu JS, 2014. Neoproterozoic tectono-magmatic evolution of the Jiangnan orogen. Science Publishing House, Beijing (in Chinese, with English Abstract).