头像
黄周传
  • 职称: 教授
  • 岗位: 仅研究系列选择
  • 联系电话:
  • 办公地址: 南大仙林校区朱共山楼
  • 电子邮件: huangz@nju.edu.cn
  • 课题组链接:

个人简介

黄周传,博士,教授,博士生导师。

教育经历

2006.09-2011.06  南京大学地球科学与工程学院 研究生

2002.09-2006.06  南京大学地球科学系地质学基地班 本科

工作经历

2018.12至今      南京大学地球科学与工程学院 教授

2013.05-2018.12  南京大学地球科学与工程学院 副教授

2016.03-2018.04  德国波茨坦地学研究中心 洪堡研究员

2011.09-2012.08  日本东北大学 JSPS Global-COE研究员

2011.07-2013.04  南京大学地球科学与工程学院 副研究员


学术兼职

中国大陆动力学专业委员会委员

江苏省地震学会青年工作委员会委员

南京市科普作家协会专家委员会委员

《地震学报》编委

《地球与行星物理论评》编委



研究方向

地壳-上地幔成像与构造变形

大陆岩石圈结构

青藏高原深部结构与动力学

俯冲带结构与动力学

大地震孕震机制


EPSL: 青藏高原生长机制研究:存在下地壳流,但范围有限

印度-亚欧板块碰撞导致的青藏高原隆升,是新生代以来最重大的地质事件之一,产生了广泛的影响。这一过程塑造了“世界屋脊”的壮丽地貌,改变了亚洲的环境,影响了生物多样性的演化。然而青藏高原的隆升变形机制尚不完全清楚。青藏高原的变形是复杂的,可能存在区域的变化。青藏高原东北缘是青藏高原扩张的前沿地带,是研究高原扩张与周边块体相互作用的重要场所。

地震波在地球内部传播,携带了地球内部结构的信息。地震波速度各向异性是地震波的传播速度随传播方向变化的性质。随着地壳的构造变形,可能产生微小裂隙结构或矿物的定向排列,这些定向结构会产生地震波各向异性,其方向与构造变形的方向有关。因此,利用地震波各向异性可以为地球内部构造变形过程提供直接约束。青藏高原东北缘的构造变形过程尚存在争议,有多种可能的模型,这些不同的模型可以产生不同的各向异性结构。因此通过计算三维各向异性模型,可以分辨青藏高原东北缘的构造变形过程。

本工作基于中国地震科学探测台阵计划地震数据,使用Rayleigh波程函方程成像方法,计算了青藏高原东北缘三维剪切波速度和各向异性模型,并基于得到的模型,获得了青藏高原东北缘的构造变形的新认识:

1. 青藏高原东北缘下地壳存在与高原地形梯度平行的各向异性(图1)。地壳流模型是解释青藏高原隆升的一个重要理论,认为青藏高原的下地壳受到高程差导致的压强差驱动,发生从高原内部向高原边缘的塑性流动。本研究的观测与地壳流模型的预测一致,表明在青藏高原东北缘下地壳可能发育地壳流(图2)。

2. 在青藏高原边缘存在平行于高原边缘的各向异性(图1)。青藏高原在向周围扩张,而青藏高原东北缘周边存在较为稳定的块体,如华北克拉通。这些稳定块体可以阻挡青藏高原的扩张,并发生方向平于高原边缘的纯剪变形,实现地壳增厚。本工作观测到的平行于高原边缘的各向异性确认此处地壳流被周边块体阻挡,并发生纯剪变形(图2)


 

1 青藏高原东北缘地壳横波速度与方位各向异性


 

2 青藏高原东北缘地壳变形模型

 

研究工作以Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography为题,发表在国际一流刊物Earth and Planetary Science Letters。第一作者为研究生郝识杰,现在新加坡南洋理工大学攻读博士学位,黄周传教授是此论文的通讯作者。本研究得到中央高校基本业务费(020614380101)、国家自然科学基金委面上项目(41674044)和中国地震科学探测台阵计划(DQJB16A0306)的资助

 

论文全文链接:https://www.sciencedirect.com/science/article/pii/S0012821X21001503


开授课程

本科生《地球物理基础》,《中俄贝加尔湖国际化实习》

硕士生《地震学》,《高等地球物理》

博士生《深部结构与地球动力学》


科研项目

学术成果

第一/通讯作者英语论文(*为研究生)

40. Huang, Z., Gou, T., Wang, L., 2021. P and S wave tomography of east-central China: insight into past and present mantle dynamics. Tectonophysics, in press

39. *Hao, S., Huang, Z., Han, C., Wang, L., Xu, M., Mi, N., Yu, D., 2021. Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomographyEarth and Planetary Science Letters 563, 116891.

38. Huang, Z., Chevrot, S., 2021. Mantle dynamics in the SE Tibetan Plateau revealed by teleseismic shear-wave splitting analysis. Physics of the Earth and Planetary Interiors 313, 106687. 

37. Huang, Z., Zhao, D., 2021. Mantle convection in subduction zones: Insights from seismicanisotropy tomography. In H. Marquardt et al., Mantle convection and surface expression, AGU monograph. Doi:10.1002/9781119528609.ch11.

36. *Wu, H., Huang, Z., Zhao, D., 2021. Deep structure beneath the southwestern flank of the Baikal rift zone and adjacent areas. Physics of the Earth and Planetary Interiors 310, 106616. 

35. *Wang, H., Huang, Z., Eken, T., Keleş, D., Kaya Eken, T., Confal, J.M., Erman, C., Yolsal Çevikbilen, S., Zhao, D., Taymaz, T., 2020. Isotropic and Anisotropic P Wave Velocity Structures of the Crust and Uppermost Mantle Beneath Turkey. J. Geophys. Res.: Solid Earth 125, 49–20. 

34. *Xu, M., Huang, Z., Wang, L., Xu, M., Zhang, Y., Mi, N., Yu, D., Yuan, X., 2020b. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth. J. Geophys. Res.: Solid Earth 125, e2019JB018117. 

33. Wang, P., Huang, Z., Wang, X., 2020. A method for estimating the crustal azimuthal anisotropy and Moho orientation simultaneously using receiver functions. J. Geophys. Res.: Solid Earth 125, e2019JB018405. 

32. *Bi, Y., Huang, Z., Wang, H., Wu, H., 2020. Upper‐Mantle Anisotropy and Dynamics Beneath Northeast Asia: Insight From SKS and Local S Splitting Analysis. Geochem. Geophys. Geosyst. 21, e2020GC009160. 

31. *Han, C., Xu, M., Huang, Z., Wang, L., Xu, M., Mi, N., Yu, D., Gou, T., Wang, H., Hao, S., Tian, M., Bi, Y., 2020. Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions. Physics of the Earth and Planetary Interiors 306, 106522. 

30. *Tian, M., Huang, Z., Wang, L., Xu, M., Mi, N., Yu, D., Wang, H., Gou, T., Xu, M., Han, C., Hao, S., Bi, Y., 2020. Tectonic evolution of the eastern margin of the Tibetan plateau: Insight from crustal structures using P wave receiver functions. Journal of Asian Earth Sciences 191, 104230. 

29. *Wang, H., Huang, Z., 2020. Seismic tomography in the southern margin of the Sichuan Basin: Insight into the plateau-craton interaction and seismotectonics in the SE Tibetan Plateau. Journal of Asian Earth Sciences 199, 104464. 

28. *Xu, M., Huang, Z., Wang, L., Xu, M., Mi, N., Yu, D., 2020a. Lateral variation of the mantle transition zone beneath the Tibetan Plateau: Insight into thermal processes during Indian–Asian collision. Physics of the Earth and Planetary Interiors 301, 106452. 

27. *Gou, T., Huang, Z., Zhao, D., Wang, L., 2019. Structural Heterogeneity and Anisotropy in the Source Zone of the 2018 Eastern Iburi Earthquake in Hokkaido, Japan. Journal of Geophysical Research: Solid Earth 124, 7052–7066. 

26. *Han, C., Huang, Z., Xu, M., Wang, L., Mi, N., Yu, D., Li, H., 2019. Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations. Geophysical Journal International 218, 2066–2078. 

25. Huang, Z., Tilmann, F., Comte, D., Zhao, D., 2019. P Wave Azimuthal Anisotropic Tomography in Northern Chile: Insight Into Deformation in the Subduction Zone. Journal of Geophysical Research: Solid Earth 124, 742–765. 

24. Huang, Z., Wang, L., Xu, M., Zhao, D., Mi, N., Yu, D., 2019. P and S Wave Tomography Beneath the SE Tibetan Plateau: Evidence for Lithospheric Delamination. Journal of Geophysical Research: Solid Earth 124, 10292–10308. 

23. Huang, Z., Wang, L., Xu, M., Zhao, D., 2018. P-wave anisotropic tomography of the SE Tibetan Plateau: Evidence for the crustal and upper-mantle deformations.Journal of Geophysical Research B: Solid Earth 123, 8957-8978. 

22. *Xu, M., Huang, H., Huang, Z., Wang, P., Wang, L., Xu, M., Mi, N., Li, H., Yu, D., Yuan, X., 2018. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis. Earth and Planetary Science Letters 482, 567–579. 

21. Huang, Z., Tilmann, F., Xu, M., Wang, L., Ding, Z., Mi, N., Yu, D., Li, H., 2017. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting. Earth and Planetary Science Letters 478, 66–75. 

20. *Xu, Z., Huang, Z., Wang, L., Xu, M., Ding, Z., Wang, P., Mi, N., Yu, D., Li, H., 2016. Crustal stress field in Yunnan: implication for crust-mantle coupling. Earthquake Science 29, 105–115. 

19. *Xu, M., Huang, H., Huang, Z., Wang, L., 2016. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab. Earthquake Science 29, 17–26. 

18. Huang, Z., Wang, L., Xu, M., Ding, Z., Wu, Y., Wang, P., Mi, N., Yu, D., Li, H., 2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth and Planetary Science Letters 432, 354–362. 

17. Huang, Z., Zhao, D., Wang, L., 2015. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. Journal of Geophysical Research B: Solid Earth 120, 5154–5174. 

16. Huang, Z., Zhao, D., Liu, X., 2015. On the trade-off between seismic anisotropy and heterogeneity: Numerical simulations and application to Northeast Japan. Journal of Geophysical Research B: Solid Earth 120, 3255–3277. 

15. Huang, Z., Wang, P., Xu, M., Wang, L., Ding, Z., Wu, Y., Xu, M., Mi, N., Yu, D., Li, H., 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth and Planetary Science Letters 411, 100–111. 

14. Huang, Z., Wang, P., Zhao, D., Wang, L., Xu, M., 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China.Journal of Geophysical Research: Solid Earth 119, 5686–5712. 

13. Huang, Z., Zhao, D., 2013. Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States. Physics of the Earth and Planetary Interiors 225, 28–40. 

12. Huang, Z., Zhao, D., Hasegawa, A., Umino, N., Park, J.-H., Kang, I.-B., 2013. Aseismic deep subduction of the Philippine Sea plate and slab window. Journal of Asian Earth Sciences 75, 82–94. 

11. Huang, Z., Zhao, D., 2013. Mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and tsunami: Insight from seismic tomography. Journal of Asian Earth Sciences 70-71, 160–168. 

10. Huang, Z., Zhao, D., 2013. Relocating the 2011 Tohoku-oki earthquakes (M 6.0–9.0). Tectonophysics 586, 35–45. 

9. Huang, Z., Zhao, D., Wang, L., 2011. Stress field in the 2008 Iwate-Miyagi earthquake (M7.2) area. Geochemistry, Geophysics, Geosystems12, Q06006. 

8. Huang, Z., Wang, L., Zhao, D., Mi, N., Xu, M., 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters 306, 105–117. 

7. Huang, Z., Zhao, D., Wang, L., 2011. Frequency-dependent shear-wave splitting and multilayer anisotropy in northeast Japan. Geophysical Research Letters 38, L08302. 

6. Huang, Z., Zhao, D., Wang, L., 2011. Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophysical Journal International 184, 1428–1444.  (2010-2011年度 Top 1%高引论文)

5. Huang, Z., Zhao, D., Wang, L., 2011. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochemistry, Geophysics, Geosystems 12, Q01002. 

4. Huang, Z., Wang, L., Zhao, D., Xu, M., Mi, N., Yu, D., Li, H., Li, C., 2010. Upper mantle structure and dynamics beneath Southeast China. Physics of the Earth and Planetary Interiors 182, 161–169. 

3. Huang, Z., Zhao, D., Umino, N., Wang, L., Matsuzawa, T., Hasegawa, A., Yoshida, T., 2010. P-wave tomography, anisotropy and seismotectonics in the eastern margin of Japan Sea. Tectonophysics 489, 177–188. 

2. Huang, Z., Xu, M., Wang, L., Mi, N., Yu, D., Li, H., 2008. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophysical Research Letters 35, L19301. 

1. Huang, Z., Wang, L., Xu, M., Liu, J., Mi, N., Liu, S., 2007. Shear wave splitting across the Ailao Shan‐Red River fault zone, SW China. Geophysical Research Letters 34, L20301. 

其他论文(Others)

18. Zhao, D., Wang, J., Huang, Z., Liu, X., 2021. Seismic structure and subduction dynamics of the western Japan arc. Tectonophysics 802, 228743. 

17. Zhao, H., Wang, P., Huang, Z., 2021. Lithospheric structures beneath the western Mongolian Plateau: Insight from S wave receiver function. Journal of Asian Earth Sciences 212, 104733. 

16. 黄周传,吉聪,吴寒婷,石宇通,耿嘉琪,徐弥坚,韩存瑞,徐鸣洁,王良书, 2021. 青藏高原东南缘地壳结构与变形机制研究进展地球与行星物理论评,52:1-17. 

15. *郝识杰,黄周传,王良书,徐鸣洁,米宁,于大勇,2021. 青藏高原东北缘瑞利面波成像:射线理论与程函方程结果的比较.高校地质学报, 26, 712-720.

14. *Gou, T., Zhao, D., Huang, Z., Wang, L., 2020. Structural Heterogeneity in Source Zones of the 2018 Anchorage Intraslab Earthquake and the 1964 Alaska Megathrust Earthquake. Geochem. Geophys. Geosyst. 21, e2019GC008812.

13. *Wang, H., Zhao, D., Huang, Z., Wang, L., 2019. Tomography, Seismotectonics, and Mantle Dynamics of Central and Eastern United States. Journal of Geophysical Research: Solid Earth 124, 8890-8907. 

12. *Gou, T., Zhao, D., Huang, Z., Wang, L., 2019. Aseismic Deep Slab and Mantle Flow Beneath Alaska: Insight From Anisotropic Tomography. Journal of Geophysical Research: Solid Earth 124, 1700–1724. 

11. Shen, X., Kind, R., Huang, Z., Yuan, X., Liu, M., 2019. Imaging the Mantle Lithosphere below the China cratons using S-to-p converted waves. Tectonophysics 754, 73–79. 

10. Yu, Z., Zhao, D., Li, J., Huang, Z., Nishizono, Y., Inakura, H., 2019. Stress Field in the 2016 Kumamoto Earthquake (M 7.3) Area. Journal of Geophysical Research: Solid Earth 124, 2638–2652. 

9. *Wang, H., Zhao, D., Huang, Z., Xu, M., Wang, L., Nishizono, Y., Inakura, H., 2018. Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data. Geophysical Journal International 214, 1151–1163. 

8. *Gou, T., Zhao, D., Huang, Z., Wang, L., 2018. Anisotropic 3‐D Ray Tracing and Its Application to Japan Subduction Zone. Journal of Geophysical Research: Solid Earth 123, 4088–4108. 

7. Bao, X., Sun, X., Xu, M., Eaton, D.W., Song, X., Wang, L., Ding, Z., Mi, N., Li, H., Yu, D., Huang, Z., Wang, P., 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters 415, 16–24. 

6. Huang, H., Wang, P., Mi, N., Huang, Z., Xu, M., Wang, L., Li, H., Yu, D., 2014. Lateral Variations of the Mantle Transition Zone Structure beneath Eastern China.Bulletin of the Seismological Society of America 104, 1533–1539. 

5. Wang, P., Huang, Z., Mi, N., Xu, M., Wang, L., Li, H., Yu, D., Huang, H., Mao, X., 2014. Crustal structure beneath the Weihe Graben in central China: Evidence for the tectonic regime transformation in the Cenozoic. Journal of Asian Earth Sciences 81, 105–114. 

4. Huang, H., Huang, Z., Wang, P., Mi, N., Li, H., Yu, D., Xu, M., Wang, L., 2013. Distinct lateral variations of upper mantle anisotropy beneath eastern China revealed by shear-wave splitting. Geochemistry, Geophysics, Geosystems 14, 1842–1855.

3. Zhao, D., Huang, Z., Umino, N., Hasegawa, A., Kanamori, H., 2011. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku‐oki earthquake (Mw 9.0). Geophysical Research Letters 38, L17308. 

2. Zhao, D., Huang, Z., Umino, N., Hasegawa, A., Yoshida, T., 2011. Seismic imaging of the Amur–Okhotsk plate boundary zone in the Japan Sea. Physics of the Earth and Planetary Interiors 188, 82–95. 

1. 黄周传,邹付戈,盛玲,朱国荣,张庆龙, 2007. 贝加尔裂谷带中部的新构造特征及其成因分析资源调查与环境28,157-164.

荣誉奖励

2020年南京大学魅力导师、学业导师优秀示范奖

2018教育部自然科学一等奖(排名第2

2015德国洪堡基金会洪堡学者

2015南京大学登峰人才支持计划(B类)

2014中国地球物理学会刘光鼎青年科技奖

2013中国地球物理学会傅承义青年科技奖

2013全国优秀博士学位论文提名

2012江苏省、南京大学优秀博士学位论文

2010教育部博士研究生学术新人奖


风采展示