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THE USE OF KNOWLEDGE GRAPH IN NATURAL SCI‐
ENCE

Knowledge graph is a field of Artificial Intelligence (AI) 
that aims to represent knowledge in the form of graphs, consist‐
ing of nodes and edges which represent entities and relation‐
ships between nodes respectively (Aidan et al., 2022). Al‐
though the knowledge graph was popularized recently due to 
use of this idea in Google’s search engine in 2012 (Amit, 
2012), its root can be traced back to the emergence of the Se‐
mantic Web as well as earlier works in ontology (Aggarwal, 
2021). These semantic networks are graphical representations 
of relationships among entities, which can be used to support 
propositional or first-order logic in traditional knowledge bases 
and natural language processing applications (Aggarwal, 2021).

Knowledge graphs consist of two main components: on‐
tology and facts. The ontology comprises concepts and their re‐
lationships, while facts consist of entities and their relation‐
ships (Fig. 1). Knowledge graphs have been utilized in scientif‐
ic research across two primary areas in the past decades. First‐
ly, knowledge graph was considered as a type of knowledge 
base that can effectively function as knowledge service, includ‐
ing information retrieval, knowledge quiz, knowledge reason‐
ing, and visualization display. A notable example demonstrat‐
ing this application is the AceKG system developed by Wang 
et al. (2018). The second aspect pertains to the ontological lev‐
el, where domain-specific terminologies are transformed into 
the standardized vocabularies through structural representation. 
This fosters the development of machine-readable knowledge 

systems, integrating diverse conceptual information from vari‐
ous datum systems. Consequently, disparate datum sources can 
be harmonized and consolidated through the utilization of on‐
tologies, ensuring interoperability and facilitating knowledge 
integration. The Gene ontology and other biomedical domain 
ontologies (e.g., ULMS) are used in this way, and have signifi‐
cantly enhanced integration of diverse types of structured data 
and enabling the development of tools for mining unstructured 
text data (Gene Ontology Consortium, 2019; Lexical Systems 
Group, 2018).

The 21st century has witnessed an exponential growth in 
scientific data, driven by advancements in technology. The 
field of geosciences, in particular, has amassed a substantial 
volume of data, propelling geoscientists into the era of big data 
(Ma X et al., 2023; Wang et al., 2021). However, data in the 
field of geoscience are stored in databases with diverse datum 
standards or unstructured literature texts. Challenges arise due 
to inconsistent terminologies, unclear sharing mechanisms, and 
semantic heterogeneity, which impede the effective utilization 
of data. As a result, the advantages of big data are less frequent‐
ly applied in the geoscience (Zhu et al., 2023b). The integra‐
tion, mining, and sharing of both structured and unstructured 
data inevitably require the support from knowledge of the geo‐
science, therefore the construction of knowledge graph serves 
as the foundation for big data-driven research in geosciences. 
The geoscience research has been entering a significant transi‐
tional period with the establishment of a new knowledge sys‐
tem as the core and with the drive of big data as the means 
(Zhu et al., 2023c; Zhou et al., 2021).

There has been notable progress in the development of 
technologies for constructing generalized knowledge graphs in 
the past years, several generalized knowledge graphs have 
been successfully created (e.g., Wikidata, YAGO etc.) and ap‐
plied within the field of AI. The construction methods of 
knowledge graphs of geoscience are still poorly explored, with 
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limited studies specifically targeting this domain. Existing 
knowledge graphs in geoscience can be grouped into two cate‐
gories. Group 1 comprises generalized knowledge graphs of 
earth sciences, such as GeoSciML (Simons et al., 2006) and 
SWEET ontology (Buttigieg et al., 2018) that have been specif‐
ically constructed to facilitate knowledge sharing within the 
geoscience domain. These graphs are somewhat similar to the 
top ontologies designed by domain experts. As a consequence, 
they contain a limited number of concepts. For instance, the 
GeoSciML and SWEET ontologies consist of a total of 1 772 
and 4 533 concepts, respectively (Zhu et al., 2023a). Therefore, 
they cannot meet the requirements for handling the extensive 
knowledge within the entire geoscience domain. Group 2 repre‐
sents knowledge graphs for specific fields within geoscience. 
Some of these knowledge graphs are designed to integrate dis‐
parate databases, such as Linked Earth, which focuses on pa‐
leoclimatic data integration (Khider et al., 2019). Others serve 
as standardized terminologies for specific domains, including 
geological time scale (Ma and Fox, 2013), sedimentary rock 
(Abel et al., 2012) and other fields. However, these knowledge 
graphs are constructed using various languages (e. g., OWL, 
RDF, Turtle, etc.) and tools (Protégé, Neo4j, etc.). Additional‐
ly, the relationships between different graphs are often unclear, 
posing challenges for the effective integration and reuse of 
them.

PRESENT WORK
Considering the current state of knowledge graph con‐

struction in the field of geoscience, the deep-time digital Earth 
program (DDE) plans to construct a comprehensive knowledge 
graph of the geoscience by establishing a unified representa‐
tion model. This endeavor aims to facilitate the establishment 
of standardized terminology and the integration of knowledge 
within the field of geoscience (Wang et al., 2021; Zhou et al., 
2021).

To achieve this objective, the DDE knowledge graph fol‐
lows a three-stage construction plan (Fig. 2). The initial stage 
focuses on the development of the knowledge system, com‐
monly known as the specialist dictionary (Fig. 3a). In this 

stage, domain experts in geoscience enumerate key terms with‐
in the disciplinary domain, providing precise definitions and 
referencing relevant literature for each term, thereby establish‐
ing a specialist dictionary. Ensuring accurate and standardized 
definitions of terminology is vitally import for the DDE, as it 
facilitates the harmonization of deep-time earth data and the 
creation of a knowledge engine that supports abductive explo‐
ration of Earth’s evolution.

The terms within the specialist dictionary are initially in‐
dependent from one another or limited hierarchical relations. 
Consequently, the second stage of the knowledge graph con‐
struction involves establishing relationships and properties be‐
tween among terms, resulting in the formation of ontologies 
(Fig. 3b). The relationships within the ontology enable to sup‐
port automated reasoning and to facilitate the integration of dif‐
ferent concepts within a unified framework. The ontologies of 
DDE are classified into two types: foundational ontology, en‐
compassing commonly used ontologies across geoscience dis‐
ciplines like spatial ontology (Wang S et al., 2023) and geologi‐
cal time ontology (Ma C et al., 2023; Ma and Fox, 2013), and 
domain-specific ontology, consisting of specialized content from 
various sub-disciplines in geosciences. Currently, 20 domain-
specific ontologies have been preliminarily developed within 
the framework of the DDE (Table 1). These ontologies will be 
expanded from literature corpora by using techniques such as 
natural language processing and text analytics. While the adop‐
tion of community-level foundational ontologies reflects the 
top-down approach, the completion of the DDE knowledge 
graph will be achieved by augmenting facts (entities and rela‐
tionships) through bottom-up methods that leverage the litera‐
ture data. The combination facts and ontology of geoscience fa‐
cilitates the reusability of data, the discovery of relevant infor‐
mation, and the generation of new novel insights through logi‐
cal reasoning.

To enable an open access to the expert-built ontologies, 
the DDE has developed the Geoscience Knowledge Graph Col‐
laborative Editor (Fig. 4; Zhu et al., 2023b; Shi et al., 2020). 
Over the four-year period (2019–2023), the DDE knowledge 
graph has achieved its first-stage construction goals on this

Figure 1. An example of two-level of knowledge graph.
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Figure 3. Frameworks of (a) knowledge system and (b) ontology of DDE.

platform and has now entered the second-stage ontology con‐
struction phase. Currently, the DDE ontology comprises 61 937 
nodes and 62 610 relationships (Table 1). In terms of both scale 
and content, the DDE knowledge graph represents the most 
comprehensive and versatile knowledge graph in geoscience.

Although the work on the knowledge graph is ongoing, 
the DDE ontologies have already exhibited practical value in 
scientific research. The ontology’s reasoning capabilities have 
been employed to automatically identify sedimentary environ‐
ments, specifically river facies and carbonate platforms (Wang 
H et al., 2023; Zhang L et al., 2023). The integrated terminolo‐
gy function has facilitated to mine the global data of stromato‐
lites (Zhang X B et al., 2023), while the retrieval function has 
been utilized for managing stratigraphic database (Xu J L et 
al., 2023). In addition to the current 20 domain ontologies 
within the DDE, several knowledge graphs have been devel‐
oped to meet specific scientific needs. These include the car‐
bonate rocks (Xu et al., 2023b), paleobiogeography and cli‐
mate paleogeography (Yu et al., 2023; Zhang L N et al., 2023), 
petroleum exploration (Tang et al., 2023), tectonic geomor‐
phology (Xi et al., 2023), geothermal (Chen et al., 2023) and 
others. Multiple studies (Ma K et al., 2023; Parson et al., 2023; 
Qiu et al., 2023a, b) have proposed state-of-the-art techniques 
and standards to form the foundation for the DDE knowledge 
graph.

Figure 2. Construction workflow for DDE knowledge graph.

Table 1 DDE domain ontology 

Domain

Paleontology

Stratigraphy

Sedimentology

Paleogeography

Mineralogy

Igneous petrology

Metamorphic petrology

Mineral deposit

Structure geology and tectonics

Geochronology

Nodes

24 936

1 268

2 675

2 831

5 665

1 670

1 028

605

1 291

424

Domain

Mathematical geoscience

Geomagnetism paleomagnetism

Engineering geology

Petroleum geology

Geothermic

Hydrogeology

Geomorphology

Surficial geochemistry

Geological mapping

Nodes

765

2 434

3 446

2 390

907

806

1 958

3 690

1 990
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DDE KNOWLEDGE PERSPECTIVE
While the current DDE knowledge graph is constructed 

by domain experts, it remains essential to determine whether 
the definitions and relationships of these concepts can be estab‐
lished as international standards, thus benefiting a broader com‐
munity of geoscientists. To enhance the quality and utility of 
the DDE knowledge graph and ensure its global adoption, two 
key strategies have been identified for implementation. Firstly, 
the involvement of more international scholars will be encour‐
aged in the construction and peer review of DDE ontologies. 
The official societies representing different subfields within 
geoscience will also be engaged in the construction of the on‐
tologies. Secondly, the GeoOpenKG graph community will be 
strengthened to facilitate global users􀆳 access, editing, and utili‐
zation of the graphs, as well as to encourage their feedback on 
DDE knowledge graph.

Only simple semantic (e.g., hierarchical, causal, constitu‐
tive) relationships are built in the current development of DDE 
ontologies. There is lack of constraints on computational rela‐
tionships and relationship properties, which directly hinders 
the inferential capabilities of geoscience knowledge (Zhu et al., 
2023c). Therefore, in the future development of geoscience on‐
tologies, domain experts need to express quantitative relation‐
ships between concepts and relationship types to enable com‐
plex reasoning capabilities within the knowledge graph.

Knowledge graph can be applied to integrate various con‐
cepts from databases as mentioned above. Hence, it is essential 
to enhance the integration of existing concept models from 
DDE database in the process of constructing domain ontolo‐
gies. This integration facilitates mapping of database concepts 
onto a unified ontology schema, thereby facilitating datum inte‐
gration. As the development of DDE databases continues, it be‐
comes possible to revise, supplement, and standardize closely 
associated terminologies related to geoscience data. This ap‐
proach should be a priority for future endeavors in DDE.

The DDE knowledge graph aims to encompass the whole 
geoscience knowledge and reconstruct its evolution to facili‐
tate the sharing of geoscience knowledge. This requires not on‐
ly including current concepts but also incorporating outdated 
ones, such as the term of geosyncline. However, the current ex‐
pert-built ontologies lack consideration for outdated concepts. 
Therefore, future DDE knowledge graph construction should 

adopt a broader bottom-up approach, mining entities and con‐
cepts from literature across different time periods, expanding 
the existing ontology, and assigning a temporal attribute to 
each concept. This approach will improve understanding of 
variations in conceptual frameworks among scientists, and fa‐
cilitate the reconstruction of knowledge evolution in Earth sci‐
ences.
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